找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blind Source Separation; Advances in Theory, Ganesh R. Naik,Wenwu Wang Book 2014 Springer-Verlag Berlin Heidelberg 2014 Blind Source Separ

[復(fù)制鏈接]
樓主: TIBIA
41#
發(fā)表于 2025-3-28 18:11:22 | 只看該作者
Subband-Based Blind Source Separation and Permutation Alignmenticular with a focus on the inherent permutation alignment problem associated with this approach, and bring attention to the most recent developments in this area, including the joint BSS approach in solving the convolutive mixing problem.
42#
發(fā)表于 2025-3-28 20:50:32 | 只看該作者
Ganesh R. Naik,Wenwu WangCovers the latest cutting edge topics on BSS and emphasis on the open problems.Present both theory and applications with examples.Offers unique in-depth analysis of BSS/ICA topics.Includes most advanc
43#
發(fā)表于 2025-3-28 23:19:15 | 只看該作者
Signals and Communication Technologyhttp://image.papertrans.cn/b/image/189150.jpg
44#
發(fā)表于 2025-3-29 04:36:49 | 只看該作者
45#
發(fā)表于 2025-3-29 09:10:29 | 只看該作者
https://doi.org/10.1007/978-3-662-59691-3urce separation problem. For the proof of concepts, the focus is on the scenario where the number of mixtures is not less than that of the sources. Based on the assumption that the sources are sparsely represented by some dictionaries, we present a joint source separation and dictionary learning alg
46#
發(fā)表于 2025-3-29 11:43:21 | 只看該作者
47#
發(fā)表于 2025-3-29 16:39:23 | 只看該作者
https://doi.org/10.1007/978-3-662-59691-3icular with a focus on the inherent permutation alignment problem associated with this approach, and bring attention to the most recent developments in this area, including the joint BSS approach in solving the convolutive mixing problem.
48#
發(fā)表于 2025-3-29 21:02:27 | 只看該作者
https://doi.org/10.1007/978-3-662-59691-3erent source vectors during the source separation process. It can theoretically avoid the permutation problem inherent to independent component analysis (ICA). The dependency in each source vector is maintained by adopting a multivariate source prior instead of a univariate source prior. In this cha
49#
發(fā)表于 2025-3-30 00:47:57 | 只看該作者
Das neue Profil des Top-Managers set of unknown source data (one-dimensional signals, images, ...) from observed mixtures of these data, while the mixing operator has unknown parameter values. The second task is Blind Mixture Identification (BMI), which aims at estimating these unknown parameter values of the mixing operator. We p
50#
發(fā)表于 2025-3-30 04:33:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙游县| 瓮安县| 荆门市| 营口市| 淮阳县| 康平县| 左云县| 永年县| 灵山县| 柳林县| 边坝县| 玉环县| 米脂县| 邵阳县| 中阳县| 休宁县| 鸡西市| 鹿泉市| 雅江县| 运城市| 清远市| 哈巴河县| 庆元县| 瑞昌市| 肇东市| 开阳县| 苏尼特左旗| 当雄县| 鹿泉市| 锡林郭勒盟| 礼泉县| 阿鲁科尔沁旗| 神农架林区| 清徐县| 含山县| 中牟县| 筠连县| 商丘市| 夹江县| 平凉市| 博乐市|