找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Blaschke Products and Their Applications; Javad Mashreghi,Emmanuel Fricain Book 2013 Springer Science+Business Media New York 2013 Blaschk

[復制鏈接]
樓主: Julienne
11#
發(fā)表于 2025-3-23 10:36:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:14:50 | 只看該作者
Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane,aper we will introduce an analogous construction in the Hardy space of the upper half plane. The levels of the multiresolution are generated by localized Cauchy kernels on a special hyperbolic lattice in the upper half plane. This multiresolution has the following new aspects: the lattice which gene
13#
發(fā)表于 2025-3-23 21:46:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:23 | 只看該作者
J. Haring (staatl. Prüfungskommissar)mal” Blaschke product with the same critical points. These maximal Blaschke products have remarkable properties similar to those of Bergman space inner functions and they provide a natural generalization of the class of finite Blaschke products.
15#
發(fā)表于 2025-3-24 02:57:30 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:17 | 只看該作者
1069-5265 ons in differential equations are examined for the first tim.?Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic a
17#
發(fā)表于 2025-3-24 11:24:19 | 只看該作者
https://doi.org/10.1007/978-3-662-25407-3 Cauchy transforms into the normalized univalent functions. We show that for the subspace .. of Cauchy transforms the univalent functions so obtained have quasi-conformal extensions to all of the plane.
18#
發(fā)表于 2025-3-24 18:09:41 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
嵩明县| 天台县| 乐陵市| 太保市| 娄烦县| 吉林市| 大悟县| 偃师市| 马公市| 凤凰县| 二手房| 余江县| 锡林浩特市| 怀安县| 集贤县| 三台县| 瑞金市| 文登市| 冀州市| 南通市| 宣汉县| 柏乡县| 阳山县| 岳阳县| 远安县| 诸暨市| 阿克陶县| 安乡县| 武山县| 扶沟县| 特克斯县| 舞阳县| 陆河县| 芒康县| 平乡县| 赣榆县| 兴和县| 泊头市| 白城市| 富裕县| 大丰市|