找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Black Hole Information and Thermodynamics; Dieter Lüst,Ward Vleeshouwers Book 2019 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: fundoplication
21#
發(fā)表于 2025-3-25 07:15:49 | 只看該作者
https://doi.org/10.1007/978-3-642-91095-1During last lecture, we discussed black hole thermodynamics and mechanics. The zero’th law states that surface gravity is constant over an event horizon. For our discussion of the first law we considered Komar quantities.
22#
發(fā)表于 2025-3-25 09:39:02 | 只看該作者
Carl Claus,Karl Grobben,Alfred KühnThe scalar field action is given by .. We promote the field . to an operator . with associated creation and annihilation operators, which we can then make time-dependent as
23#
發(fā)表于 2025-3-25 13:58:28 | 只看該作者
https://doi.org/10.1007/978-3-662-25446-2We express a quantum scalar field in Minkowski and Rindler space as
24#
發(fā)表于 2025-3-25 17:44:59 | 只看該作者
https://doi.org/10.1007/978-3-662-25446-2The results of the last few lectures can be summarized as follows
25#
發(fā)表于 2025-3-25 21:03:04 | 只看該作者
26#
發(fā)表于 2025-3-26 01:53:51 | 只看該作者
Riemannian Geometry,We consider (d+1)-dimensional . ., which are topological manifold that look locally like .. . can be covered by open sets ., ., where . is some indexing set. The . are then defined as bijective maps . with the requirement that, for ., the . . is .. The collection of all . is then called an ..
27#
發(fā)表于 2025-3-26 05:17:53 | 只看該作者
,Einstein’s Equations,The Christoffel connection is associated to a covariant derivative acting on tensors. In familiar gauge theories, the partial derivative is replaced by a covariant derivative as .. In general relativity, the covariant derivative acts as ., where . indicates that multiplication is tensorially non-trivial, see (.).
28#
發(fā)表于 2025-3-26 10:17:52 | 只看該作者
29#
發(fā)表于 2025-3-26 15:29:11 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云龙县| 徐水县| 盘锦市| 汶上县| 奉化市| 昌邑市| 商丘市| 斗六市| 左贡县| 安溪县| 石阡县| 崇信县| 石楼县| 南昌县| 巴青县| 醴陵市| 军事| 宁津县| 白沙| 武强县| 汶川县| 忻州市| 罗定市| 东乡族自治县| 松江区| 泰州市| 景德镇市| 罗平县| 镶黄旗| 三明市| 武定县| 遂宁市| 内江市| 屯门区| 湘阴县| 马龙县| 丰原市| 荆门市| 宕昌县| 芦溪县| 丹江口市|