找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birkhoff–James Orthogonality and Geometry of Operator Spaces; Arpita Mal,Kallol Paul,Debmalya Sain Book 2024 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: HARDY
11#
發(fā)表于 2025-3-23 10:19:03 | 只看該作者
Der Taylorsche Satz und Potenzreihen,The concept of smoothness is one of the fundamental aspects of the theory of Banach spaces, both from geometric and analytic points of view. Indeed, a cursory look at the contents of any classical or modern textbook on the subject matter would suffice to argue in favor of our claim.
12#
發(fā)表于 2025-3-23 15:16:53 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:19 | 只看該作者
Notations and Terminologies,The notations and terminologies to be used throughout this monograph are mentioned in this chapter.
14#
發(fā)表于 2025-3-24 00:12:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:05 | 只看該作者
Operator Norm Attainment,Linear operators lie at the very heart of functional analysis and operator theory. As mentioned in the Preface, this monograph aims at exploring the beautiful interrelation between analysis, algebra, and geometry in the space of bounded linear operators between Banach spaces.
16#
發(fā)表于 2025-3-24 07:58:39 | 只看該作者
17#
發(fā)表于 2025-3-24 13:12:29 | 只看該作者
Extreme Contractions,Extremal structure of the unit ball of an operator space is certainly an important topic in the geometry of bounded linear operators.
18#
發(fā)表于 2025-3-24 18:00:22 | 只看該作者
Birkhoff–James Orthogonality and Geometry of Operator Spaces978-981-99-7111-4Series ISSN 2363-6149 Series E-ISSN 2363-6157
19#
發(fā)表于 2025-3-24 20:55:26 | 只看該作者
https://doi.org/10.1007/978-3-663-12214-2. Therefore, understanding B–J orthogonality of operators is of paramount importance to us. In this chapter, we gradually build the theory of characterizing B–J orthogonality of operators between Banach (Hilbert) spaces, up?to its fullest generality.
20#
發(fā)表于 2025-3-25 00:23:41 | 只看該作者
Der Taylorsche Satz und Potenzreihen, Indeed, one of the fundamental differences between the usual orthogonality in Hilbert spaces and B-J orthogonality in Banach spaces is that unlike the former one, the later one is, in general, asymmetric.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米林县| 临桂县| 富顺县| 陕西省| 嘉义县| 扬中市| 周口市| 长垣县| 台湾省| 福清市| 焉耆| 濮阳县| 通榆县| 武乡县| 南乐县| 湄潭县| 富锦市| 安宁市| 南涧| 西平县| 荣昌县| 广灵县| 册亨县| 沁水县| 永康市| 察隅县| 湄潭县| 内江市| 香格里拉县| 晋宁县| 海口市| 富民县| 东明县| 罗山县| 昔阳县| 浦县| 日照市| 洱源县| 黄冈市| 西华县| 陵川县|