找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry, Rational Curves, and Arithmetic; Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Book 2013 Springer Science+Business M

[復(fù)制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 23:00:43 | 只看該作者
Robert Ebermann,Ibrahim ElmadfaThis survey is an invitation to recent developments in higher dimensional birational geometry.
32#
發(fā)表于 2025-3-27 01:58:05 | 只看該作者
33#
發(fā)表于 2025-3-27 08:06:40 | 只看該作者
Curves of Low Degrees on Fano Varieties,We survey the period maps of some Fano varieties and the geometry of their spaces of curves of low genera and degrees.
34#
發(fā)表于 2025-3-27 09:37:23 | 只看該作者
Uniruledness Criteria and Applications,We discuss uniruledness criteria on higher-dimensional varieties and their applications.
35#
發(fā)表于 2025-3-27 13:51:51 | 只看該作者
The Cone of Curves of K3 Surfaces Revisited,The following theorem was proved in [4] over the complex numbers. It turns out that the proof given there works with very small adjustments in arbitrary characteristic.
36#
發(fā)表于 2025-3-27 20:11:42 | 只看該作者
37#
發(fā)表于 2025-3-27 23:37:37 | 只看該作者
On the Ubiquity of Twisted Sheaves,We describe some recent work on the uses of twisted sheaves in algebra, arithmetic, and geometry. In particular, we touch on the role of twisted sheaves in:
38#
發(fā)表于 2025-3-28 06:05:06 | 只看該作者
Birational Geometry, Rational Curves, and Arithmetic978-1-4614-6482-2Series ISSN 2365-9564 Series E-ISSN 2365-9572
39#
發(fā)表于 2025-3-28 07:15:40 | 只看該作者
https://doi.org/10.1007/978-3-211-49348-9miliar with characteristic-.-geometry but who would like to see similarities, as well as differences, to complex geometry. More precisely, these notes are on algebraic surfaces in positive characteristic and assume familiarity with the complex side of this theory, say, on the level of Beauville’s book [9].
40#
發(fā)表于 2025-3-28 13:08:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞口县| 南丰县| 东安县| 交口县| 旬阳县| 延吉市| 江永县| 阳朔县| 江口县| 名山县| 双峰县| 广昌县| 高碑店市| 承德市| 平定县| 丹寨县| 麻城市| 东港市| 中西区| 定兴县| 长宁县| 兰考县| 油尖旺区| 合作市| 潍坊市| 无极县| 紫金县| 沽源县| 肥东县| 从江县| 尚义县| 新田县| 晋州市| 双城市| 犍为县| 临汾市| 新兴县| 壤塘县| 武强县| 方山县| 赤峰市|