找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Birational Geometry of Hypersurfaces; Gargnano del Garda, Andreas Hochenegger,Manfred Lehn,Paolo Stellari Book 2019 Springer Nature Switze

[復制鏈接]
樓主: magnify
11#
發(fā)表于 2025-3-23 13:38:20 | 只看該作者
Echte Erziehung aus Frankreich,and unirationality, R-equivalence on rational points, Chow groups of zero-cycles, Galois action on the Picard group, Brauer group, higher unramified cohomology, global differentials, specialisation method (via R-equivalence), geometrically rational surfaces, cubic hypersurfaces.
12#
發(fā)表于 2025-3-23 13:51:10 | 只看該作者
https://doi.org/10.1007/978-3-531-94009-0es and some other fibres which are not even stably rational. This used the specialisation method of Voisin, as extended by Pirutka and myself. Under specific circumstances, a simplified version of the specialisation method was produced by Schreieder, leading to a simpler proof of the HPT example. I
13#
發(fā)表于 2025-3-23 18:50:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:37:17 | 只看該作者
https://doi.org/10.1007/978-3-658-32882-5m of constructing Bridgeland stability conditions on these categories and we then investigate the geometry of the corresponding moduli spaces of stable objects. We discuss a number of consequences related to cubic fourfolds including new proofs of the Torelli theorem and of the integral Hodge conjec
15#
發(fā)表于 2025-3-24 02:21:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:47:30 | 只看該作者
17#
發(fā)表于 2025-3-24 13:00:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:20:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:18 | 只看該作者
20#
發(fā)表于 2025-3-25 02:12:36 | 只看該作者
,Durchführung der Befragung der Mentoren,ge structures that come naturally associated with a cubic fourfold. The emphasis is on the Hodge and lattice theoretic aspects with many technical details worked out explicitly. More geometric or derived results are only hinted at.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
六枝特区| 定南县| 休宁县| 安塞县| 巩义市| 清水河县| 金溪县| 五寨县| 五家渠市| 米林县| 安化县| 黄龙县| 土默特左旗| 梁平县| 赤城县| 肥东县| 连州市| 呼伦贝尔市| 宁城县| 奉化市| 十堰市| 庄浪县| 任丘市| 岳阳市| 石渠县| 温州市| 靖州| 留坝县| 兴义市| 乌鲁木齐县| 分宜县| 政和县| 呼伦贝尔市| 彭州市| 百色市| 甘孜县| 扎兰屯市| 灵丘县| 洛隆县| 城固县| 西华县|