找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biorthogonal Systems in Banach Spaces; Petr Hájek,Vicente Montesinos Santalucía,Václav Zi Textbook 2008 Springer-Verlag New York 2008 Bana

[復制鏈接]
查看: 42241|回復: 38
樓主
發(fā)表于 2025-3-21 18:57:00 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Biorthogonal Systems in Banach Spaces
影響因子2023Petr Hájek,Vicente Montesinos Santalucía,Václav Zi
視頻videohttp://file.papertrans.cn/189/188521/188521.mp4
發(fā)行地址Notes and exercises related to the topic.Presents open problems and possible directions of research in each chapter
學科分類CMS Books in Mathematics
圖書封面Titlebook: Biorthogonal Systems in Banach Spaces;  Petr Hájek,Vicente Montesinos Santalucía,Václav Zi Textbook 2008 Springer-Verlag New York 2008 Bana
影響因子.One of the fundamental questions of Banach space theory is whether every Banach space has a basis. A space with a basis gives us a sense of familiarity and concreteness, and perhaps a chance to attempt the classification of all Banach spaces and other problems...The main goals of this book are to: -introduce the reader to some of the basic concepts, results and applications of biorthogonal systems in infinite dimensional geometry of Banach spaces, and in topology and nonlinear analysis in Banach spaces, -aim the text at graduate students and researchers who have a foundation in Banach space theory, - expose the reader to some current avenues of research in biorthogonal systems in Banach spaces, -provide notes and exercises related to the topic, suggest open problems and possible new directions of research...Numerous exercises are included, and the only prerequisites are a basic background in functional analysis..
Pindex Textbook 2008
The information of publication is updating

書目名稱Biorthogonal Systems in Banach Spaces影響因子(影響力)




書目名稱Biorthogonal Systems in Banach Spaces影響因子(影響力)學科排名




書目名稱Biorthogonal Systems in Banach Spaces網絡公開度




書目名稱Biorthogonal Systems in Banach Spaces網絡公開度學科排名




書目名稱Biorthogonal Systems in Banach Spaces被引頻次




書目名稱Biorthogonal Systems in Banach Spaces被引頻次學科排名




書目名稱Biorthogonal Systems in Banach Spaces年度引用




書目名稱Biorthogonal Systems in Banach Spaces年度引用學科排名




書目名稱Biorthogonal Systems in Banach Spaces讀者反饋




書目名稱Biorthogonal Systems in Banach Spaces讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:48:05 | 只看該作者
Bank- und Kundenloyalit?t im Wandel). It is therefore a priori unclear if every nonseparable subspace of . contains an uncountable biorthogonal system. The third section singles out some natural classes of spaces that are obtained “constructively” (representable spaces)— and hence are well-behaved in this respect, as shown by results
板凳
發(fā)表于 2025-3-22 02:32:30 | 只看該作者
Exkurs: Die Erfolgsgeschichte von PING ANo as spaces admitting a weakly Lindel?f M-basis. The fifth section shows the impact of the additional axioms to ZFC on the structure of .(.) spaces, where . is a Corson compactum. The last two sections examine extensions of Mbases and quasicomplements. Among other things, it is shown that WLD spaces
地板
發(fā)表于 2025-3-22 06:47:13 | 只看該作者
5#
發(fā)表于 2025-3-22 11:51:02 | 只看該作者
Lean Management Beyond Manufacturinge results include characterizations of spaces in which every dual ball is weak*-separable, as well as an improvement of Sersouri’s result showing that such spaces must only contain countable ω-independent families..The latter part of the chapter presents several applications of various types of bior
6#
發(fā)表于 2025-3-22 15:12:38 | 只看該作者
Universality and the Szlenk Index,ace. The negative solution of Szlenk then consisted of showing that there exists a separable reflexive space with an arbitrarily large countable index..In the first two sections, we investigate various versions of the universality problem, with emphasis on reflexivity and complementability condition
7#
發(fā)表于 2025-3-22 18:46:23 | 只看該作者
Biorthogonal Systems in Nonseparable Spaces,). It is therefore a priori unclear if every nonseparable subspace of . contains an uncountable biorthogonal system. The third section singles out some natural classes of spaces that are obtained “constructively” (representable spaces)— and hence are well-behaved in this respect, as shown by results
8#
發(fā)表于 2025-3-22 23:04:29 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:07 | 只看該作者
10#
發(fā)表于 2025-3-23 07:41:12 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-19 04:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
赤峰市| 股票| 武夷山市| 平顺县| 武定县| 商河县| 天峻县| 秦安县| 合肥市| 星子县| 金寨县| 乐平市| 老河口市| 大港区| 绍兴县| 湘潭县| 寿宁县| 乌拉特中旗| 阿合奇县| 赣榆县| 河南省| 三门县| 宁陕县| 沈丘县| 视频| 龙川县| 武宁县| 安平县| 罗田县| 大庆市| 彰武县| 通渭县| 特克斯县| 聂拉木县| 金堂县| 白沙| 郯城县| 尉犁县| 梧州市| 苏尼特右旗| 上林县|