找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 8th Chinese Conferen Zhenan Sun,Shiguan Shan,YiLong Yin Conference proceedings 2013 Springer International Publishin

[復制鏈接]
樓主: GERM
21#
發(fā)表于 2025-3-25 05:51:42 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9ects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
22#
發(fā)表于 2025-3-25 08:25:59 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9tation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
23#
發(fā)表于 2025-3-25 12:00:36 | 只看該作者
Robust Face Recognition Based on Spatially-Weighted Sparse Coding face images are often strongly correlated, spatial weights are smoothed to enforce similar values at adjacent locations. Extensive experiments on benchmark face databases demonstrate that our method is very effective in dealing with face occlusion, corruption, lighting and expression changes, etc.
24#
發(fā)表于 2025-3-25 19:35:13 | 只看該作者
Non-negative Sparse Representation Based on Block NMF for Face Recognitioneature fusion approach via combining NSR-feature with BNMF-feature. The proposed algorithms are tested on ORL and FERET face databases. Experimental results show that the proposed NSR+BNMF method greatly outperforms two single-feature based methods, namely NSR method and BNMF method.
25#
發(fā)表于 2025-3-25 21:55:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:21 | 只看該作者
LPQ Based Static and Dynamic Modeling of Facial Expressions in 3D Videosects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
27#
發(fā)表于 2025-3-26 04:43:04 | 只看該作者
Kernel Collaborative Representation with Regularized Least Square for Face Recognitiontation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
28#
發(fā)表于 2025-3-26 12:09:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:35:46 | 只看該作者
https://doi.org/10.1007/978-3-319-75263-1t into sub images. Then, standard deviation is used to compute the adaptive weighted fusion of features. Finally, the nearest classifier is adopted for recognition. The experiments on the ORL and Yale face databases demonstrate the effectiveness of the proposed method.
30#
發(fā)表于 2025-3-26 17:36:08 | 只看該作者
https://doi.org/10.1007/0-387-32186-1cision boundaries with the aim to improve recognition accuracy. Experiments on the CMU-PIE database show that?ASLBP outperforms LBP and?SLBP. Although ASLBP is designed to increase the performance of?SLBP, the proposed learning process can be generalized to other LBP variants.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁南县| 筠连县| 东山县| 庄河市| 潢川县| 舞阳县| 平泉县| 尼勒克县| 左权县| 行唐县| 会宁县| 巴楚县| 奉节县| 丹江口市| 东丰县| 岢岚县| 闽侯县| 长春市| 扎囊县| 鹤庆县| 黑龙江省| 松江区| 巩留县| 弥勒县| 迁西县| 江达县| 长阳| 临泉县| 龙里县| 江城| 盐城市| 龙州县| 肃北| 湾仔区| 鸡东县| 郑州市| 宾川县| 佛冈县| 韶关市| 陆河县| 安龙县|