找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 8th Chinese Conferen Zhenan Sun,Shiguan Shan,YiLong Yin Conference proceedings 2013 Springer International Publishin

[復(fù)制鏈接]
樓主: GERM
21#
發(fā)表于 2025-3-25 05:51:42 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9ects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
22#
發(fā)表于 2025-3-25 08:25:59 | 只看該作者
https://doi.org/10.1007/978-1-4020-8891-9tation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
23#
發(fā)表于 2025-3-25 12:00:36 | 只看該作者
Robust Face Recognition Based on Spatially-Weighted Sparse Coding face images are often strongly correlated, spatial weights are smoothed to enforce similar values at adjacent locations. Extensive experiments on benchmark face databases demonstrate that our method is very effective in dealing with face occlusion, corruption, lighting and expression changes, etc.
24#
發(fā)表于 2025-3-25 19:35:13 | 只看該作者
Non-negative Sparse Representation Based on Block NMF for Face Recognitioneature fusion approach via combining NSR-feature with BNMF-feature. The proposed algorithms are tested on ORL and FERET face databases. Experimental results show that the proposed NSR+BNMF method greatly outperforms two single-feature based methods, namely NSR method and BNMF method.
25#
發(fā)表于 2025-3-25 21:55:16 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:21 | 只看該作者
LPQ Based Static and Dynamic Modeling of Facial Expressions in 3D Videosects the latent temporal information and represents dynamic changes occurred in facial muscle actions. The SVM classifier is finally used to predict the expression type. The experiments are carried out on the BU-4DFE database, and the achieved results demonstrate the effectiveness of the proposed method.
27#
發(fā)表于 2025-3-26 04:43:04 | 只看該作者
Kernel Collaborative Representation with Regularized Least Square for Face Recognitiontation based classification with regularized least square (Kernel CRC_RLS, KCRC_RLS) by implicitly mapping the sample into high-dimensional space via kernel tricks. The experimental results on FERET face database demonstrate that Kernel CRC_RLS is effective in classification, leading to promising performance.
28#
發(fā)表于 2025-3-26 12:09:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:35:46 | 只看該作者
https://doi.org/10.1007/978-3-319-75263-1t into sub images. Then, standard deviation is used to compute the adaptive weighted fusion of features. Finally, the nearest classifier is adopted for recognition. The experiments on the ORL and Yale face databases demonstrate the effectiveness of the proposed method.
30#
發(fā)表于 2025-3-26 17:36:08 | 只看該作者
https://doi.org/10.1007/0-387-32186-1cision boundaries with the aim to improve recognition accuracy. Experiments on the CMU-PIE database show that?ASLBP outperforms LBP and?SLBP. Although ASLBP is designed to increase the performance of?SLBP, the proposed learning process can be generalized to other LBP variants.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱阳市| 南充市| 清水河县| 祥云县| 平江县| 兴业县| 涡阳县| 诏安县| 色达县| 丰县| 峨山| 察隅县| 建瓯市| 万年县| 阿克苏市| 蓝山县| 镇远县| 德阳市| 金山区| 囊谦县| 濮阳县| 阜阳市| 嫩江县| 新竹县| 罗定市| 奉新县| 和龙市| 岗巴县| 凤山市| 肥乡县| 仁寿县| 呼图壁县| 闻喜县| 营山县| 鞍山市| 济源市| 永州市| 宁津县| 高碑店市| 黎城县| 乌海市|