找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biometric Recognition; 14th Chinese Confere Zhenan Sun,Ran He,Zhenhua Guo Conference proceedings 2019 Springer Nature Switzerland AG 2019 a

[復(fù)制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 23:04:18 | 只看該作者
Fingerprint Presentation Attack Detection via Analyzing Fingerprint Pairsll use of the difference in materials between the fake fingerprint and the real fingerprint, we proposed to utilize two images of a finger for classification. A pair of fingerprints are first aligned using a deformable registration algorithm and then are fed into MobileNet-v2 networks to perform the
32#
發(fā)表于 2025-3-27 01:23:36 | 只看該作者
Finger Vein Recognition Based on Double-Orientation Coding Histogramin recognition has great research significance. In the paper, we offer a double orientation coding (DOC) method for finger vein recognition to represent the direction of vein texture using two orientation values. To strengthen the discrimination ability and robustness of the direction description, w
33#
發(fā)表于 2025-3-27 09:06:21 | 只看該作者
Fingerprint Classification Based on Lightweight Neural Networksn model has many problems such as complicated operation, lots of parameters, massive data. In this paper, we present a lightweight neural network for automatic extraction features and classification of fingerprint images. Fingerprint Region of Interest (ROI) images is regarded as the input of the ne
34#
發(fā)表于 2025-3-27 12:54:39 | 只看該作者
35#
發(fā)表于 2025-3-27 16:47:38 | 只看該作者
A Novel Method for Finger Vein Recognitionve shown a good performance. However, these systems usually adopt such large networks or complex step-by-step processes that they cannot be applied to the hardware platform with limited computing power and small memory. To address this limitation, this research proposes a finger vein recognition net
36#
發(fā)表于 2025-3-27 19:02:57 | 只看該作者
37#
發(fā)表于 2025-3-28 01:51:04 | 只看該作者
38#
發(fā)表于 2025-3-28 06:11:22 | 只看該作者
39#
發(fā)表于 2025-3-28 06:37:51 | 只看該作者
Global and Local Spatial-Attention Network for Isolated Gesture Recognitionnformation from multi-modality inputs. To this end, we propose a novel attention-based method with 3D convolutional neural network (CNN) to recognize isolated gesture recognition. It includes two parts. The first one is a global and local spatial-attention network (GLSANet), which takes into account
40#
發(fā)表于 2025-3-28 11:30:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
团风县| 尼玛县| 右玉县| 麻城市| 肃宁县| 商南县| 衢州市| 额尔古纳市| 惠州市| 长武县| 略阳县| 黄浦区| 云梦县| 玉溪市| 武平县| 邻水| 华容县| 长治市| 威海市| 宜良县| 吉安市| 万源市| 邮箱| 射阳县| 隆昌县| 隆林| 长汀县| 鹤庆县| 双江| 鲜城| 无锡市| 崇阳县| 星子县| 襄城县| 茶陵县| 北宁市| 九台市| 荃湾区| 静宁县| 沙雅县| 天祝|