找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Text Mining; Kalpana Raja Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Scienc

[復(fù)制鏈接]
樓主: 根深蒂固
51#
發(fā)表于 2025-3-30 10:28:31 | 只看該作者
52#
發(fā)表于 2025-3-30 12:43:31 | 只看該作者
,A Text Mining Protocol for Extracting Drug–Drug Interaction and Adverse Drug Reactions Specific to e comorbidities and polypharmacy. Databases such as PubMed contain hundreds of abstracts with DDI and ADR information. PubMed is being updated every day with thousands of abstracts. Therefore, manually retrieving the data and extracting the relevant information is tedious task. Hence, automated text
53#
發(fā)表于 2025-3-30 19:41:46 | 只看該作者
Extracting Significant Comorbid Diseases from MeSH Index of PubMed,The reason for comorbid occurrence in any patient may be genetic or molecular interference from any other processes. Comorbidity and multimorbidity may be technically different, yet still are inseparable in studies. They have overlapping nature of associations and hence can be integrated for a more
54#
發(fā)表于 2025-3-30 23:15:48 | 只看該作者
Integration of Transcriptomics Data and Metabolomic Data Using Biomedical Literature Mining and Pats and determines the associated biomedical entities using biomedical literature mining. Tremendous data available in the biomedical literature helps in addressing complex biomedical problems. Advancements in genomics and transcriptomics helps in decoding the genetic information obtained from various
55#
發(fā)表于 2025-3-31 02:23:15 | 只看該作者
56#
發(fā)表于 2025-3-31 07:38:44 | 只看該作者
Book 2022se comorbidity, literature-based discovery, protocols to combine literature mining, machine learning for predicting biomedical discoveries, and uncovering unknown public knowledge by combining two pieces of information from different sets of PubMed articles. Additional chapters discuss the importanc
57#
發(fā)表于 2025-3-31 11:40:16 | 只看該作者
58#
發(fā)表于 2025-3-31 14:22:23 | 只看該作者
Landrecht und Landrechtsgesetzgebung,scale genomic studies aids in the determination of the etiology of a disease and drug targets. This chapter addresses the perspectives of transcriptomics and metabolomics in biomedical literature mining and gives an overview of state-of-the-art techniques in this field.
59#
發(fā)表于 2025-3-31 21:32:13 | 只看該作者
A Hybrid Protocol for Identifying Comorbidity-Based Potential Drugs for COVID-19 Using Biomedical Ly-based disease mortality in case of COVID-19 patients with type 2 diabetes mellitus (T2D), hypertension and cardiovascular disease (CVD). In this chapter, we provide a hybrid protocol based on biomedical literature mining, network analysis of omics data, and deep learning for the identification of most potential drugs for COVID-19.
60#
發(fā)表于 2025-3-31 22:36:45 | 只看該作者
Integration of Transcriptomics Data and Metabolomic Data Using Biomedical Literature Mining and Patscale genomic studies aids in the determination of the etiology of a disease and drug targets. This chapter addresses the perspectives of transcriptomics and metabolomics in biomedical literature mining and gives an overview of state-of-the-art techniques in this field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬莱市| 滦平县| 乐陵市| 河东区| 江西省| 禹城市| 隆德县| 开封县| 博野县| 象州县| 改则县| 炎陵县| 康马县| 梅河口市| 巴塘县| 浙江省| 余庆县| 三河市| 周至县| 宜春市| 普宁市| 汤原县| 祁门县| 沾益县| 乌苏市| 中阳县| 奉新县| 当阳市| 景东| 巴彦淖尔市| 横峰县| 丹江口市| 荥经县| 姚安县| 富裕县| 昌江| 龙胜| 南充市| 麻城市| 武义县| 松溪县|