找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Signals Based Computer-Aided Diagnosis for Neurological Disorders; M. Murugappan,Yuvaraj Rajamanickam Book 2022 The Editor(s) (

[復(fù)制鏈接]
樓主: Coronary-Artery
31#
發(fā)表于 2025-3-26 22:42:35 | 只看該作者
Analysis of Intramuscular Coherence of Lower Limb Muscle Activities Using Magnitude Squared Coherenning about the central nervous system’s techniques for controlling motor task execution. The main aim of this study was to compare the intramuscular coherence of lower limb muscles during the various tasks. The study utilized a publicly available full-body mobile brain-body imaging database for the
32#
發(fā)表于 2025-3-27 03:54:37 | 只看該作者
Biomedical Signals Based Computer-Aided Diagnosis for Neurological Disorders
33#
發(fā)表于 2025-3-27 08:57:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:43 | 只看該作者
to neurological disorder diagnosis. The book provides the basics of biomedical signal processing, optimization methods, and machine learning/deep learning techniques used in designing CAD systems for neurological disorders..978-3-030-97847-1978-3-030-97845-7
35#
發(fā)表于 2025-3-27 17:28:38 | 只看該作者
Abnormal EEG Detection Using Time-Frequency Images and Convolutional Neural Network,figurable CNN structures, namely, DenseNet, SeizureNet, and Inception-ResNet-V2, to extract deep learned features. Finally, an extreme learning machine (ELM)-based classifier detects the input TF images. The proposed STFT-based CNN method is evaluated using the Temple University Hospital (TUH) abnor
36#
發(fā)表于 2025-3-27 21:28:34 | 只看該作者
Physical Action Categorization Pertaining to Certain Neurological Disorders Using Machine Learning- of life for such patients or providing better treatment. The framework makes use of various features from various signal signatures with contribution from time domain, frequency domain, and inter-channel statistics. Next, we conducted a comparative analysis of SVM, 3-NN, and ensemble learning with
37#
發(fā)表于 2025-3-27 22:49:39 | 只看該作者
A Comparative Study on EEG Features for Neonatal Seizure Detection,as analyzed using XGBoost and support vector machine (SVM) classifier with fourfold cross-validation. We found that entropy plays a significant role in the discrimination of seizure and non-seizure segments. We achieved an average AUC of 0.84 and 0.76 using XGBoost and SVM classifiers, respectively.
38#
發(fā)表于 2025-3-28 03:05:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:26:39 | 只看該作者
40#
發(fā)表于 2025-3-28 11:05:53 | 只看該作者
Investigation of the Brain Activation Pattern of Stroke Patients and Healthy Individuals During Hap Complexity parameters were lower in LBD and RBD in the frontal regions of the alpha band. The significant difference channels between the emotions were analyzed by statistical analysis using ANOVA. Moreover, the features of each subject group were used for emotion classification by the application
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中卫市| 克东县| 荃湾区| 平顶山市| 马山县| 昌黎县| 分宜县| 安丘市| 全椒县| 黄浦区| 维西| 探索| 舞钢市| 永修县| 琼中| 洛宁县| 敦煌市| 兴国县| 武强县| 禄丰县| 囊谦县| 辉南县| 遂宁市| 图木舒克市| 石楼县| 行唐县| 苍山县| 伊吾县| 定襄县| 泌阳县| 尚义县| 无棣县| 乌什县| 泰顺县| 青州市| 嫩江县| 米易县| 正蓝旗| 张家口市| 泰宁县| 田林县|