找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomechanical Modelling at the Molecular, Cellular and Tissue Levels; Gerhard A. Holzapfel,Ray W. Ogden Book 2009 CISM Udine 2009 biomecha

[復(fù)制鏈接]
樓主: 密度
11#
發(fā)表于 2025-3-23 09:52:01 | 只看該作者
Need for a Continuum Biochemomechanical Theory of Soft Tissue and Cellular Growth and Remodeling,onse to continually changing hemodynamic and metabolic conditions’. I submit that mathematical models can help us to understand better the complex adaptations (and maladaptations) manifested by vascular tissues and cells, for such models can build intuition via simulations that contrast the effects
12#
發(fā)表于 2025-3-23 16:35:44 | 只看該作者
Multi-scale Modelling of the Heart,hich access systems of ODEs representing the cellular processes underlying the cardiac action potential. Navier-Stokes equations are solved for coronary blood flow in a system of branching blood vessels embedded in the deforming myocardium and the delivery of oxygen and metabolites is coupled to the
13#
發(fā)表于 2025-3-23 21:28:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:30 | 只看該作者
Kooperation und Kompetition im Videospielechanical environment, and that there is a pressing need for mathematical models to integrate information from the rapidly expanding data bases on such adaptations. Although both the biological motivation and the theoretical framework presented herein apply generally to soft tissues and cells, ideas
15#
發(fā)表于 2025-3-24 04:39:22 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:11 | 只看該作者
Kooperation und Kompetition im Videospielchanical properties of soft biological tissue can be analyzed by comparing theory with experimental data. Of particular concern will be the elastic properties of arterial wall tissue. The results of mechanical testing are important for the characterization of the material properties through appropri
17#
發(fā)表于 2025-3-24 14:42:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:11 | 只看該作者
https://doi.org/10.1007/978-3-211-95875-9biomechanical modeling; cellular growth; mechanics; modeling; simulation; tissue; tissue engineering
19#
發(fā)表于 2025-3-24 22:18:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:28:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石城县| 龙泉市| 安宁市| 林口县| 尤溪县| 外汇| 红河县| 汉川市| 松滋市| 徐水县| 原阳县| 千阳县| 蓬莱市| 延安市| 平谷区| 普兰县| 五常市| 仙居县| 绩溪县| 民权县| 澄江县| 武功县| 精河县| 香港 | 仁化县| 东台市| 云南省| 合作市| 无为县| 孟津县| 龙州县| 余庆县| 云阳县| 怀集县| 于都县| 阳泉市| 屏东县| 西城区| 葵青区| 望谟县| 宁阳县|