找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biologically-Inspired Optimisation Methods; Parallel Algorithms, Andrew Lewis,Sanaz Mostaghim,Marcus Randall Book 2009 Springer-Verlag Berl

[復(fù)制鏈接]
查看: 17694|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:56:09 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Biologically-Inspired Optimisation Methods
期刊簡稱Parallel Algorithms,
影響因子2023Andrew Lewis,Sanaz Mostaghim,Marcus Randall
視頻videohttp://file.papertrans.cn/188/187533/187533.mp4
發(fā)行地址Presents recent research in Biologically-inspired Optimisation Methods
學(xué)科分類Studies in Computational Intelligence
圖書封面Titlebook: Biologically-Inspired Optimisation Methods; Parallel Algorithms, Andrew Lewis,Sanaz Mostaghim,Marcus Randall Book 2009 Springer-Verlag Berl
影響因子Humanity has often turned to Nature for inspiration to help it solve its problems.? The systems She provides are often based on simple rules and premises, yet are able to adapt to new and complex environments quickly and efficiently.? Problems from a range of human endeavours, including, science, engineering and economics, require us to find good quality solutions in exponentially large search spaces, a task that often requires vast amounts computational resources and effort.? In this book, the contributing authors solve these problems by modelling aspects of the natural world, from the flocking of birds and fish, the operation of colonies of ants through to chromosome reproduction and beyond.? Many of the contributions represent extended studies of work presented at a number of workshops on Biologically-Inspired Optimisation Methods at international conferences on e-Science, Grid Computing, and Evolutionary Computation.? A variety of chapters from some of the leading experts in the field present an overview of the state-of-the-art, recent advances in theoretical and practical ideas and techniques, and details of application of these methods to a range of benchmark and real world p
Pindex Book 2009
The information of publication is updating

書目名稱Biologically-Inspired Optimisation Methods影響因子(影響力)




書目名稱Biologically-Inspired Optimisation Methods影響因子(影響力)學(xué)科排名




書目名稱Biologically-Inspired Optimisation Methods網(wǎng)絡(luò)公開度




書目名稱Biologically-Inspired Optimisation Methods網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Biologically-Inspired Optimisation Methods被引頻次




書目名稱Biologically-Inspired Optimisation Methods被引頻次學(xué)科排名




書目名稱Biologically-Inspired Optimisation Methods年度引用




書目名稱Biologically-Inspired Optimisation Methods年度引用學(xué)科排名




書目名稱Biologically-Inspired Optimisation Methods讀者反饋




書目名稱Biologically-Inspired Optimisation Methods讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:53:47 | 只看該作者
Guiding Agent Learning in Design and Ant Colony Optimisation. This paper discusses niching techniques for Ant Colony Optimisation. Two niching Ant Colony Optimisation algorithms are introduced and an empirical analysis and critical evaluation of these techniques presented for a suite of single and multiple objective optimisation problems.
地板
發(fā)表于 2025-3-22 06:51:02 | 只看該作者
1860-949X ts problems.? The systems She provides are often based on simple rules and premises, yet are able to adapt to new and complex environments quickly and efficiently.? Problems from a range of human endeavours, including, science, engineering and economics, require us to find good quality solutions in
5#
發(fā)表于 2025-3-22 08:43:37 | 只看該作者
Weiming Shen,Jean-Paul A. Barthèso apply parallel performance measures in multi-objective evolutionary algorithms taking into consideration their stochastic nature. Finally, we present a selection of current parallel multi-objective evolutionary algorithms that integrate novel strategies to address multi-objective issues.
6#
發(fā)表于 2025-3-22 15:10:01 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:06 | 只看該作者
F. Mandorli,U. Cugini,H. E. Otto,F. Kimura swarm optimisation and extremal optimisation, so as to allow them to solve dynamic optimisation problems. This survey chapter examines representative works and methodologies of these techniques on this important class of problems.
8#
發(fā)表于 2025-3-23 00:07:19 | 只看該作者
Supporting the Knowledge Life-Cycle resources, allowing for the outline of an automatic . operator tuning and selection methodology. Although not presented in this chapter, similar complementary studies have been conducted on intensification operators and local search algorithms.
9#
發(fā)表于 2025-3-23 02:21:20 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:23 | 只看該作者
Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments,at at least partly asynchronous algorithms should be used in real-world environments. Finally, the issue of how to utilise newly available nodes, as well as the loss of existing nodes, is considered and two methods of generating new particles during algorithm execution are investigated.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛坪县| 连州市| 宜良县| 桐庐县| 九江县| 绿春县| 鲁山县| 广水市| 马龙县| 九龙县| 全椒县| 扎赉特旗| 大名县| 宣汉县| 阜新市| 安龙县| 安庆市| 米林县| 临泽县| 嘉定区| 康乐县| 长乐市| 南木林县| 鞍山市| 巴南区| 盘锦市| 农安县| 长岛县| 会理县| 柯坪县| 海城市| 泰州市| 建瓯市| 盘锦市| 静乐县| 巴彦县| 普兰店市| 鸡泽县| 红桥区| 秦皇岛市| 铅山县|