找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bio-Inspired Computational Intelligence and Applications; International Confer Kang Li,Minrui Fei,Shiwei Ma Conference proceedings 2007 Spr

[復(fù)制鏈接]
樓主: 無法仿效
21#
發(fā)表于 2025-3-25 04:30:52 | 只看該作者
An Agent Reinforcement Learning Model Based on Neural Networksesigns the agent reinforcement learning based on neural networks. By the simulation experiment of agent’s bid price in Multi-Agent Electronic Commerce System, validated the Agent Reinforcement Learning Algorithm Based on Neural Networks has very good performance and the action impending ability.
22#
發(fā)表于 2025-3-25 07:32:49 | 只看該作者
23#
發(fā)表于 2025-3-25 11:38:42 | 只看該作者
Application of the Agamogenetic Algorithm to Solve the Traveling Salesman Problemamogenetic operator R-Edge and one mutation operator NI-Dot are given by introducing the conception of the relative distance between cities. The validity of the AGA to solve the traveling salesman problem is shown by simulative experiments.
24#
發(fā)表于 2025-3-25 18:57:46 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:22 | 只看該作者
26#
發(fā)表于 2025-3-26 00:26:37 | 只看該作者
https://doi.org/10.1007/978-3-642-45817-0or dynamic modification of the population’s dimensionality. A mathematical example was applied to evaluate this proposed approach. The experiment results suggested that this proposed approach is feasible, correct and valid.
27#
發(fā)表于 2025-3-26 06:23:34 | 只看該作者
A Novel Neural Network Based Reinforcement Learningthe validity of ART2-RL. As the complexity of the simulation increased, the result shows that the number of collision between robot and obstacles is effectively decreased; the novel neural network model provides significant improvement in the space measurement of reinforcement learning.
28#
發(fā)表于 2025-3-26 08:36:51 | 只看該作者
Parameter Identification of Bilinear System Based on Genetic Algorithm. Through a simulation study to an MIMO bilinear system, good results can still be got. In the last section, the paper describes that a hybrid GA, the combination of Genetic Algorithm and nonlinear Least Square, was developed to identify bilinear system structure and parameters simultaneously.
29#
發(fā)表于 2025-3-26 15:01:58 | 只看該作者
30#
發(fā)表于 2025-3-26 17:58:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 18:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渭南市| 神池县| 大安市| 濉溪县| 武义县| 家居| 湄潭县| 方正县| 姜堰市| 赤峰市| 墨脱县| 咸丰县| 蓬溪县| 宜春市| 定日县| 福州市| 凤山市| 九龙坡区| 鄂州市| 囊谦县| 盐城市| 和田县| 淮滨县| 景洪市| 桓仁| 沛县| 灵宝市| 唐海县| 张家港市| 盘锦市| 新化县| 内丘县| 集贤县| 阜阳市| 绥棱县| 富锦市| 永顺县| 濮阳市| 宁化县| 大荔县| 武山县|