找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Quadratic Forms; An Algorithmic Appro Johannes Buchmann,Ulrich Vollmer Book 2007 Springer-Verlag Berlin Heidelberg 2007 Number theor

[復制鏈接]
樓主: minuscule
41#
發(fā)表于 2025-3-28 17:01:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:30:09 | 只看該作者
Equivalence of Forms, introduce transformations that do not change the minimum of a form. Also, the numbers that can be represented by f remain the same. Those transformations will enable us to simplify the representation problem and the minimum problem.
43#
發(fā)表于 2025-3-28 23:10:56 | 只看該作者
Reduction of Indefinite Forms,ndefinite forms can only be used to decide equivalence of integral indefinite forms and the decision algorithm is much less efficient than in the positive definite case since reduction is no longer unique. Reduction theory also solves the minimum problem for integral indefinite forms.
44#
發(fā)表于 2025-3-29 03:57:42 | 只看該作者
45#
發(fā)表于 2025-3-29 10:57:15 | 只看該作者
Subexponential Algorithms,uivalence problem. Those algorithms are much faster than the deterministic algorithms presented in Chapter 9. They use an approach dubbed . which originated in work by Kraichik [Kra22] and seemingly independent work by Western and Miller [WM68]. The first proposals to apply this approach in the cont
46#
發(fā)表于 2025-3-29 13:03:55 | 只看該作者
47#
發(fā)表于 2025-3-29 18:59:50 | 只看該作者
48#
發(fā)表于 2025-3-29 21:09:14 | 只看該作者
first review a Clifford analysis-based approach to the construction of higher-dimensional prolates associated with the ball-truncated Fourier transform. A non-singular Clifford differential operator acting on multidimensional Clifford-valued functions is shown to commute with the ball-truncated Four
49#
發(fā)表于 2025-3-30 02:32:28 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:50 | 只看該作者
Book 2015ing pattern from cereals to non-cereals, in accordance with the changing consumption pattern. The book would be of interest to teachers, researchers, policymakers, students and general readers having an interest in agricultural development in India..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁化县| 多伦县| 郁南县| 千阳县| 宜兰县| 南昌市| 正宁县| 济阳县| 阳城县| 丹棱县| 尉犁县| 鱼台县| 泉州市| 五河县| 金沙县| 白沙| 理塘县| 太仆寺旗| 腾冲县| 台中市| 射阳县| 呈贡县| 双桥区| 景泰县| 象山县| 仪陇县| 壤塘县| 泾阳县| 临桂县| 焦作市| 上高县| 连城县| 邓州市| 海口市| 汝州市| 巴青县| 阳谷县| 揭西县| 鲁甸县| 南充市| 增城市|