找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20

[復制鏈接]
查看: 32178|回復: 39
樓主
發(fā)表于 2025-3-21 16:59:16 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bilinear Regression Analysis
期刊簡稱An Introduction
影響因子2023Dietrich von Rosen
視頻videohttp://file.papertrans.cn/187/186236/186236.mp4
發(fā)行地址Presents results for bilinear regression models and their connection to classical statistical multivariate analysis.Sheds new light on the notion of linear and bilinear multivariate models.Includes bo
學科分類Lecture Notes in Statistics
圖書封面Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20
影響因子This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis..
Pindex Book 2018
The information of publication is updating

書目名稱Bilinear Regression Analysis影響因子(影響力)




書目名稱Bilinear Regression Analysis影響因子(影響力)學科排名




書目名稱Bilinear Regression Analysis網絡公開度




書目名稱Bilinear Regression Analysis網絡公開度學科排名




書目名稱Bilinear Regression Analysis被引頻次




書目名稱Bilinear Regression Analysis被引頻次學科排名




書目名稱Bilinear Regression Analysis年度引用




書目名稱Bilinear Regression Analysis年度引用學科排名




書目名稱Bilinear Regression Analysis讀者反饋




書目名稱Bilinear Regression Analysis讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:41:45 | 只看該作者
The Basic Ideas of Obtaining MLEs: Unknown Dispersion,sitions of the tensor space where within-individuals spaces also have an inner product which has to be estimated. All obtained estimators have explicit forms. A short literature review of bilinear regression models is given.
板凳
發(fā)表于 2025-3-22 02:03:43 | 只看該作者
Basic Properties of Estimators,rived for all estimators as well as the covariance among the estimators from the same model. Calculations use knowledge about the matrix normal, Wishart and inverted Wishart distributions. It is shown that the estimators are asymptotically equivalent to normally distributed random variables.
地板
發(fā)表于 2025-3-22 07:02:14 | 只看該作者
Density Approximations,on model the approximating density also appears to be a density. It can be shown that under some conditions the density represents a mixture of a normal distribution and a matrix Kotz-distribution. Similar results are shown to be available for the extended bilinear regression models.
5#
發(fā)表于 2025-3-22 09:49:07 | 只看該作者
6#
發(fā)表于 2025-3-22 13:53:01 | 只看該作者
7#
發(fā)表于 2025-3-22 18:37:20 | 只看該作者
8#
發(fā)表于 2025-3-22 21:34:46 | 只看該作者
9#
發(fā)表于 2025-3-23 04:35:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:35 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 05:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵石县| 昆明市| 徐汇区| 呼伦贝尔市| 五大连池市| 平遥县| 门头沟区| 南宁市| 军事| 永年县| 洪湖市| 弋阳县| 鄂尔多斯市| 东平县| 德惠市| 乌海市| 绍兴市| 门源| 永和县| 台南县| 长汀县| 汪清县| 云南省| 昌平区| 新蔡县| 竹北市| 卢氏县| 错那县| 吴江市| 临桂县| 雷山县| 高唐县| 施甸县| 凌海市| 河南省| 蒙自县| 新郑市| 湘阴县| 加查县| 南宫市| 英山县|