找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete; Proceedings of the N Ludwig Faddeev,Pierre Van Moerbeke,Fra

[復制鏈接]
樓主: bradycardia
31#
發(fā)表于 2025-3-27 00:03:28 | 只看該作者
Botched Engagement in the Intifadahappen to be expressible as the integrability condition for a system of linear equations. Linear eigenvalue problems and associated t-evolutions have produced classes of soliton equations [1, 2] and have led to the disclosure of major integrability features (such as the existence of multisoliton sol
32#
發(fā)表于 2025-3-27 01:44:50 | 只看該作者
https://doi.org/10.1057/9780230372474air) as a function of one-field is studied. Methodically, the transforms of the coefficients are equalized to Frechèt differential (first term of the Taylor series on prolonged space) to establish the operator forms. In the commutative (Abelian) case, as it was recently proved for the KP-KdV Lax ope
33#
發(fā)表于 2025-3-27 09:10:50 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:57 | 只看該作者
Deborah F. Shmueli,Rassem Khamaisis representing a natural difference deformation of the so called two parametric Darboux-P?shl-Teller model and to describe explicitly the solutions of the related difference Schr?dinger equation. In the limit when the difference step tends to zero the related formulas reproduce well known results co
35#
發(fā)表于 2025-3-27 15:16:25 | 只看該作者
36#
發(fā)表于 2025-3-27 20:44:38 | 只看該作者
37#
發(fā)表于 2025-3-27 23:18:07 | 只看該作者
Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete978-1-4020-3503-6Series ISSN 1568-2609
38#
發(fā)表于 2025-3-28 02:38:09 | 只看該作者
39#
發(fā)表于 2025-3-28 08:52:00 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 13:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邵武市| 深水埗区| 浪卡子县| 永川市| 莎车县| 娱乐| 丹江口市| 阆中市| 大同市| 麻城市| 克山县| 民乐县| 常州市| 渝中区| 延庆县| 潜江市| 西贡区| 尚义县| 成武县| 田阳县| 巧家县| 屏边| 新巴尔虎右旗| 西乌珠穆沁旗| 广宗县| 石狮市| 吴旗县| 察哈| 梁山县| 西林县| 卓尼县| 察哈| 宝兴县| 周至县| 洱源县| 正定县| 松江区| 嫩江县| 石阡县| 应城市| 凤凰县|