找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilevel Programming Problems; Theory, Algorithms a Stephan Dempe,Vyacheslav Kalashnikov,Nataliya Kala Book 2015 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: 頻率
21#
發(fā)表于 2025-3-25 06:31:22 | 只看該作者
Mixed-Integer Bilevel Programming Problems, be globally optimal even if it is feasible and an optimal solution of the optimistic linear bilevel problem does in general not exist. To circumvent the last difficulty, weak optimistic solutions are defined arising if the objective function is minimized over the closure of the feasible set. Optima
22#
發(fā)表于 2025-3-25 10:38:28 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:00 | 只看該作者
Applications to Other Energy Systems,e agents’ conjectures concern the price variations depending upon their production output’s increase or decrease. Besides theoretical questions results of numerical computations are presented. The computation of best tolls for traveling through arcs of a transportation network is modeled as a bileve
24#
發(fā)表于 2025-3-25 19:29:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:35:01 | 只看該作者
Reduction of Bilevel Programming to a Single Level Problem,he case of a strongly stable lower level optimal solution using its directional derivative, using partial calmness in the optimal value function transformation, and applying variational analysis for KKT transformations explicitly using Lagrange multipliers or not. Solution algorithms are formulated and investigated for all reductions.
26#
發(fā)表于 2025-3-26 01:32:30 | 只看該作者
Convex Bilevel Programs,x combination of both objective functions and projection onto the feasible set. In the second section, a similar algorithm is used to find a best point within the solutions of a variational inequality.
27#
發(fā)表于 2025-3-26 07:40:41 | 只看該作者
28#
發(fā)表于 2025-3-26 08:43:42 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:51 | 只看該作者
30#
發(fā)表于 2025-3-26 17:11:55 | 只看該作者
Isotopes and the Natural Environmenthe case of a strongly stable lower level optimal solution using its directional derivative, using partial calmness in the optimal value function transformation, and applying variational analysis for KKT transformations explicitly using Lagrange multipliers or not. Solution algorithms are formulated and investigated for all reductions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 00:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三明市| 甘泉县| 桑日县| 河间市| 曲阳县| 榕江县| 汾阳市| 平南县| 绥化市| 什邡市| 长治市| 隆安县| 佛坪县| 五大连池市| 保靖县| 清原| 垦利县| 巧家县| 大连市| 尉氏县| 施甸县| 高台县| 始兴县| 喜德县| 嘉义市| 尉犁县| 融水| 甘孜| 本溪市| 晋州市| 武清区| 黎城县| 康乐县| 通海县| 五莲县| 蓬溪县| 上虞市| 龙泉市| 连江县| 南乐县| 平塘县|