找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bilevel Programming Problems; Theory, Algorithms a Stephan Dempe,Vyacheslav Kalashnikov,Nataliya Kala Book 2015 Springer-Verlag Berlin Heid

[復制鏈接]
樓主: 頻率
21#
發(fā)表于 2025-3-25 06:31:22 | 只看該作者
Mixed-Integer Bilevel Programming Problems, be globally optimal even if it is feasible and an optimal solution of the optimistic linear bilevel problem does in general not exist. To circumvent the last difficulty, weak optimistic solutions are defined arising if the objective function is minimized over the closure of the feasible set. Optima
22#
發(fā)表于 2025-3-25 10:38:28 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:00 | 只看該作者
Applications to Other Energy Systems,e agents’ conjectures concern the price variations depending upon their production output’s increase or decrease. Besides theoretical questions results of numerical computations are presented. The computation of best tolls for traveling through arcs of a transportation network is modeled as a bileve
24#
發(fā)表于 2025-3-25 19:29:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:35:01 | 只看該作者
Reduction of Bilevel Programming to a Single Level Problem,he case of a strongly stable lower level optimal solution using its directional derivative, using partial calmness in the optimal value function transformation, and applying variational analysis for KKT transformations explicitly using Lagrange multipliers or not. Solution algorithms are formulated and investigated for all reductions.
26#
發(fā)表于 2025-3-26 01:32:30 | 只看該作者
Convex Bilevel Programs,x combination of both objective functions and projection onto the feasible set. In the second section, a similar algorithm is used to find a best point within the solutions of a variational inequality.
27#
發(fā)表于 2025-3-26 07:40:41 | 只看該作者
28#
發(fā)表于 2025-3-26 08:43:42 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:51 | 只看該作者
30#
發(fā)表于 2025-3-26 17:11:55 | 只看該作者
Isotopes and the Natural Environmenthe case of a strongly stable lower level optimal solution using its directional derivative, using partial calmness in the optimal value function transformation, and applying variational analysis for KKT transformations explicitly using Lagrange multipliers or not. Solution algorithms are formulated and investigated for all reductions.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 13:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大宁县| 大石桥市| 夏邑县| 屏东市| 塘沽区| 日土县| 吉木乃县| 德州市| 平顶山市| 长乐市| 大埔县| 葫芦岛市| 洪雅县| 和龙市| 大埔区| 宁南县| 搜索| 阿克陶县| 宜良县| 贵德县| 大厂| 甘泉县| 双城市| 宜阳县| 云龙县| 黄浦区| 东兰县| 米林县| 福泉市| 淳化县| 伊金霍洛旗| 汽车| 白山市| 宁南县| 牟定县| 佛教| 崇仁县| 田阳县| 杨浦区| 平利县| 金秀|