找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data, Artificial Intelligence, and Data Analytics in Climate Change Research; For Sustainable Deve Gaurav Tripathi,Achala Shakya,Pravee

[復(fù)制鏈接]
樓主: Stenosis
31#
發(fā)表于 2025-3-26 22:41:15 | 只看該作者
32#
發(fā)表于 2025-3-27 02:54:36 | 只看該作者
https://doi.org/10.1007/978-3-031-01798-8USLE (rainfall erosivity, soil erodibility, slope length, slope steepness, land cover management, and conservation strategies). High-resolution satellite data of 5?m and DEM of 12.5?m were used to generate LULC and slope layer. Using GIS-based overlay analysis, all thematic layers have been analyzed
33#
發(fā)表于 2025-3-27 09:11:26 | 只看該作者
Synthesis Lectures on Computer Scienceprofile. From 17.48 cubic meters in billion in 2006 to 3.28 cubic meters in billion in 2014, the yearly flow volume dropped. Following the construction of the Sarangkheda Dam, the yearly flow volume from pre-dam to post-dam averaged 5.93 cubic meters in billion across the downstream, and from 1985 t
34#
發(fā)表于 2025-3-27 13:01:12 | 只看該作者
Introduction to Linear Elasticityspecies. The prediction methods play a vital role in accurate precipitation forecasts. This chapter aims to evaluate the accuracy of rainfall prediction in India through machine learning (ML) techniques like K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), and Ada-Boost (AB). The h
35#
發(fā)表于 2025-3-27 14:55:43 | 只看該作者
Introduction to Linear Elasticityimplications for statistical tests and the generation of long-term data. Relying solely on assumptions proves inadequate for accurate analysis; thus, this study underscores the importance of collecting data through long-duration observations, harnessing the power of big data analytics. The spatial d
36#
發(fā)表于 2025-3-27 18:15:52 | 只看該作者
Introduction and Mathematical Preliminaries,esult, governments are under pressure to create trustworthy and precise maps of flood risk regions and to further plan for sustainable flood risk management based on prevention, protection, and preparedness. Artificial Intelligence (AI) and Machine Learning (ML) have emerged as powerful tools in add
37#
發(fā)表于 2025-3-27 23:39:29 | 只看該作者
38#
發(fā)表于 2025-3-28 04:24:52 | 只看該作者
Extension, Bending and Torsion,n-depth overview of deep learning models specifically designed for fine-scale climate change prediction, with a primary focus on improving spatial and temporal resolution. The notion of deep learning and its applicability to studies on climate change are introduced at the beginning of the chapter. I
39#
發(fā)表于 2025-3-28 09:17:04 | 只看該作者
40#
發(fā)表于 2025-3-28 12:15:09 | 只看該作者
https://doi.org/10.1007/978-3-030-52811-9ility based on various derived thematic maps like administrative boundaries with talukas, topography of the area, contour map, soil classification, geomorphology, and drainage pattern using the geoinformatics tools. In the present work, an attempt has been made to determine the spatial assessment of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南木林县| 瓦房店市| 汶上县| 桦甸市| 贵溪市| 惠来县| 五大连池市| 得荣县| 柳州市| 红桥区| 正定县| 南木林县| 青川县| 安陆市| 柳林县| 松潘县| 榆社县| 永安市| 始兴县| 周至县| 昌吉市| 牙克石市| 马龙县| 平山县| 商河县| 罗定市| 祁东县| 景洪市| 丰台区| 瓦房店市| 漳平市| 昭平县| 道孚县| 易门县| 延长县| 瑞丽市| 临洮县| 错那县| 武功县| 徐闻县| 南澳县|