找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Preprocessing; Enabling Smart Data Julián Luengo,Diego García-Gil,Francisco Herrera Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 萬圣節(jié)
11#
發(fā)表于 2025-3-23 11:15:17 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:11 | 只看該作者
13#
發(fā)表于 2025-3-23 18:47:43 | 只看該作者
Introduction to Compiler Designramework that implemented the MapReduce paradigm. Apache Spark appeared a few years later improving the Hadoop Ecosystem. Similarly, Apache Flink appeared in the last years for tackling the Big Data streaming problem. However, as these frameworks were created for dealing with huge amounts of data, m
14#
發(fā)表于 2025-3-24 02:02:04 | 只看該作者
https://doi.org/10.1007/978-0-85729-829-4nowledge and insights we can extract from it. Referring to the well-known “garbage in, garbage out” principle, accumulating vast amounts of raw data will not guarantee quality results, but poor knowledge. In this last chapter we aim to provide a couple of final thoughts on the importance of data pre
15#
發(fā)表于 2025-3-24 05:23:49 | 只看該作者
Book 2020st relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems.?.This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and
16#
發(fā)表于 2025-3-24 09:17:27 | 只看該作者
Introduction to Compiler Designitical impact in the learning process, as most learners suppose that the data is complete. However, in this Big Data era, the massive growth in the scale of the data poses a challenge to traditional proposals created to tackle noise and missing values, as they have difficulties coping with such a large amount of data.
17#
發(fā)表于 2025-3-24 13:23:31 | 只看該作者
Introduction to Compiler Designthe early proposals on dealing with parallel discretization. Then, we present some distributed solutions capable of scaling on large-scale datasets. We finish with a study of the discretization methods capable of dealing with Big Data streams.
18#
發(fā)表于 2025-3-24 18:55:39 | 只看該作者
19#
發(fā)表于 2025-3-24 20:21:25 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
穆棱市| 鹤壁市| 丰镇市| 弋阳县| 濮阳县| 得荣县| 霸州市| 内丘县| 高台县| 宁蒗| 永靖县| 洪雅县| 延津县| 江城| 苏尼特左旗| 额尔古纳市| 延长县| 武穴市| 深州市| 大埔县| 江山市| 漾濞| 玉龙| 全南县| 礼泉县| 宜阳县| 天峻县| 泗水县| 鄯善县| 集贤县| 宜州市| 桑日县| 土默特右旗| 桂平市| 宣武区| 平和县| 封开县| 宁安市| 东港市| 嘉峪关市| 濉溪县|