找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Big Data Benchmarking; 5th International Wo Tilmann Rabl,Kai Sachs,Hans-Arno Jacobson Conference proceedings 2015 Springer International Pu

[復(fù)制鏈接]
樓主: expenditure
41#
發(fā)表于 2025-3-28 16:37:38 | 只看該作者
https://doi.org/10.1007/978-1-4757-4067-7gas exploration and production, telecommunication, healthcare, agriculture, mining) and similarly in government (e.g., homeland security, smart cities, public transportation, accountable care). In developing several such applications over the years, we have come to realize that existing benchmarks f
42#
發(fā)表于 2025-3-28 19:24:36 | 只看該作者
https://doi.org/10.1007/978-0-387-76635-5cessing. In this paper, we propose a modified MapReduce architecture – MapReduce Agent (MRA) – that resolves those performance problems. MRA can reduce completion time, improve system utilization, and give better performance. MRA employs multi-connection which resolves error recovery with a Q-chaine
43#
發(fā)表于 2025-3-28 23:33:07 | 只看該作者
44#
發(fā)表于 2025-3-29 05:38:15 | 只看該作者
45#
發(fā)表于 2025-3-29 11:02:00 | 只看該作者
An Approach to Benchmarking Industrial Big Data Applicationsgas exploration and production, telecommunication, healthcare, agriculture, mining) and similarly in government (e.g., homeland security, smart cities, public transportation, accountable care). In developing several such applications over the years, we have come to realize that existing benchmarks f
46#
發(fā)表于 2025-3-29 11:26:35 | 只看該作者
The Emergence of Modified Hadoop Online-Based MapReduce Technology in Cloud Environmentscessing. In this paper, we propose a modified MapReduce architecture – MapReduce Agent (MRA) – that resolves those performance problems. MRA can reduce completion time, improve system utilization, and give better performance. MRA employs multi-connection which resolves error recovery with a Q-chaine
47#
發(fā)表于 2025-3-29 15:44:41 | 只看該作者
Towards Benchmarking IaaS and PaaS Clouds for Graph Analyticshallenge for the process of benchmarking data-intensive services, namely the inclusion of the data-processing algorithm in the system under test; this increases significantly the relevance of benchmarking results, albeit, at the cost of increased benchmarking duration.
48#
發(fā)表于 2025-3-29 22:52:29 | 只看該作者
49#
發(fā)表于 2025-3-30 01:20:12 | 只看該作者
Towards a Complete BigBench Implementationases. It was fully specified and completely implemented on the Hadoop stack. In this paper, we present updates on our development of a complete implementation on the Hadoop ecosystem. We will focus on the changes that we have made to data set, scaling, refresh process, and metric.
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方正县| 萝北县| 利辛县| 石狮市| 扎兰屯市| 清水河县| 新巴尔虎右旗| 临安市| 临汾市| 花垣县| 临泽县| 乌审旗| 遵义市| 百色市| 兴隆县| 桐梓县| 库尔勒市| 凉城县| 双辽市| 措美县| 广丰县| 永年县| 衡南县| 杂多县| 东乌| 绥棱县| 民勤县| 浑源县| 马鞍山市| 广州市| 大悟县| 呈贡县| 三河市| 文水县| 永清县| 六盘水市| 阜宁县| 蓬莱市| 宁阳县| 上饶县| 屏边|