找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics for Smart Urban Systems; Saeid Pourroostaei Ardakani,Ali Cheshmehzangi Book 2023 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Philanthropist
11#
發(fā)表于 2025-3-23 11:00:20 | 只看該作者
https://doi.org/10.1007/978-1-4614-5383-3 economic solutions. This chapter aims to propose a time-series?machine learning?approach to forecast cryptocurrency?market trends-mainly Bitcoin. It is comprised of three steps, including data preprocessing, pattern?recognition, and price prediction. The data preprocessing approach aims to handle m
12#
發(fā)表于 2025-3-23 13:53:42 | 只看該作者
Tobias Heinroth,Wolfgang Minkerinformation. However, they still suffer from the lack of a solid Big Data solutions to recognise, model and predict credit risk data patterns. This chapter aims to propose machine learning?pipelines which are capable of extracting principal information from a huge and public credit risk dataset. For
13#
發(fā)表于 2025-3-23 20:30:27 | 只看該作者
Working with Collections and Custom Typests the impact of the pandemic on people’s mobility trends at the early stages. It uses a correlation matrix method to find the correlations of mobility trends and six commonly-used places, including retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential
14#
發(fā)表于 2025-3-23 22:41:09 | 只看該作者
Spring Data Within Your Spring Applicationoisy or unlabeled samples, they could produce incorrect or inaccurate conclusions. This chapter refers to a single target prediction analysis on Google’s App rating. This aspect is relevant to smart urban management and systems and could help optimize data analysis for multiple uses. After conductin
15#
發(fā)表于 2025-3-24 02:55:25 | 只看該作者
Adding E-mail and Scheduling Tasks-CIS Fraud Detection dataset was raised for technique innovation to tackle this problem. For the consideration of the size of the available fraud dataset, this chapter proposes a solution with the combination of the big data technique and the machine learning algorithms. Aside from the raised pipeli
16#
發(fā)表于 2025-3-24 07:33:11 | 只看該作者
17#
發(fā)表于 2025-3-24 13:00:16 | 只看該作者
18#
發(fā)表于 2025-3-24 16:47:36 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:02 | 只看該作者
Improve the Daily Societal Operations Using Credit Fraud Detection: A Big Data Classification Solutne of the solution, other identified works include a comparison of four implemented machine learning algorithms, three surveys into the computing time with respect to the data size, number of executors, and number of cores. Findings from this chapter help finding solutions for more efficient credit fraud detection.
20#
發(fā)表于 2025-3-25 01:50:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
满洲里市| 咸宁市| 同德县| 林甸县| 磐安县| 当涂县| 邳州市| 阳原县| 达尔| 宿州市| 阜平县| 平武县| 安乡县| 五台县| 城口县| 嘉兴市| 峨山| 逊克县| 融水| 揭西县| 南投县| 淮安市| 沾益县| 阳城县| 江北区| 镇宁| 南涧| 昌江| 太保市| 教育| 原平市| 龙南县| 安宁市| 九龙城区| 东海县| 龙岩市| 怀远县| 荣成市| 枞阳县| 兰西县| 桦甸市|