找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 18th International C Sanjay Madria,Takahiro Hara Conference proceedings 2016 Springer Internati

[復制鏈接]
查看: 35340|回復: 56
樓主
發(fā)表于 2025-3-21 17:43:53 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Analytics and Knowledge Discovery
期刊簡稱18th International C
影響因子2023Sanjay Madria,Takahiro Hara
視頻videohttp://file.papertrans.cn/186/185608/185608.mp4
發(fā)行地址Includes supplementary material:
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data Analytics and Knowledge Discovery; 18th International C Sanjay Madria,Takahiro Hara Conference proceedings 2016 Springer Internati
影響因子.This book constitutes the refereed proceedings of the 18th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2016, held in Porto, Portugal, September 2016...The 25 revised full papers presented were carefully reviewed and selected from 73 submissions. The papers are organized in topical sections on Mining Big Data, Applications of Big Data Mining, Big Data Indexing and Searching, Big Data Learning and Security, Graph Databases and Data Warehousing, Data Intelligence and Technology..
Pindex Conference proceedings 2016
The information of publication is updating

書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)




書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)學科排名




書目名稱Big Data Analytics and Knowledge Discovery網絡公開度




書目名稱Big Data Analytics and Knowledge Discovery網絡公開度學科排名




書目名稱Big Data Analytics and Knowledge Discovery被引頻次




書目名稱Big Data Analytics and Knowledge Discovery被引頻次學科排名




書目名稱Big Data Analytics and Knowledge Discovery年度引用




書目名稱Big Data Analytics and Knowledge Discovery年度引用學科排名




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:00:57 | 只看該作者
TopPI: An Efficient Algorithm for Item-Centric Mininghe . most frequent closed itemsets that item belongs to. For example, in our retail dataset, TopPI finds the itemset “nori seaweed, wasabi, sushi rice, soy sauce” that occurrs in only 133 store receipts out of 290 million. It also finds the itemset “milk, puff pastry”, that appears 152,991 times. Th
板凳
發(fā)表于 2025-3-22 01:07:18 | 只看該作者
A Rough Connectedness Algorithm for Mining Communities in Complex Networks Though community detection is a very active research area, most of the algorithms focus on detecting disjoint community structure. However, real-world complex networks do not necessarily have disjoint community structure. Concurrent overlapping and hierarchical communities are prevalent in real-wor
地板
發(fā)表于 2025-3-22 06:10:09 | 只看該作者
Mining User Trajectories from Smartphone Data Considering Data Uncertaintyh attention. Wi-Fi fingerprints are the sets of Wi-Fi scanning results recorded in mobile devices. However, the issue of data uncertainty is not considered in the proposed Wi-Fi positioning systems. In this paper, we propose a framework to find user trajectories from the Wi-Fi fingerprints recorded
5#
發(fā)表于 2025-3-22 11:29:42 | 只看該作者
A Heterogeneous Clustering Approach for Human Activity Recognitionormance of HAR system deployed on large-scale is often significantly lower than reported due to the sensor-, device-, and person-specific heterogeneities. In this work, we develop a new approach for clustering such heterogeneous data, represented as a time series, which incorporates different level
6#
發(fā)表于 2025-3-22 14:34:55 | 只看該作者
7#
發(fā)表于 2025-3-22 19:11:47 | 只看該作者
Mining Data Streams with Dynamic Confidence Intervalsg if its average success probability in the data stream reaches a user specified threshold. We propose an algorithm approximating the family of all interesting itemsets in a data stream. Using Chernoff bounds, our algorithm dynamically adjusts the confidence intervals of the candidate itemsets’ prob
8#
發(fā)表于 2025-3-23 00:36:46 | 只看該作者
Evaluating Top-K Approximate Patterns via Text Clusteringing algorithm, where the document features are derived from such patterns. Specifically, we exploit approximate patterns within the well-known . (Frequent Itemset-based Hierarchical Clustering) algorithm, which was originally designed to employ exact frequent itemsets to achieve a concise and inform
9#
發(fā)表于 2025-3-23 04:12:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:40 | 只看該作者
An Exhaustive Covering Approach to Parameter-Free Mining of Non-redundant Discriminative Itemsetshaustive covering, for finding non-redundant discriminative itemsets. ExCover outputs non-redundant patterns where each pattern covers best at least one positive transaction. With no control parameters limiting the search space, ExCover efficiently performs an exhaustive search for best-covering pat
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 01:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贡觉县| 古蔺县| 大理市| 新竹县| 苗栗县| 桓台县| 内丘县| 新龙县| 台山市| 惠来县| 宜黄县| 禄丰县| 南城县| 峡江县| 翼城县| 麟游县| 阿拉善左旗| 木里| 临朐县| 德清县| 乌鲁木齐县| 上高县| 赫章县| 潜山县| 华蓥市| 上高县| 白玉县| 萨嘎县| 镇宁| 辽源市| 锡林郭勒盟| 嫩江县| 杭锦旗| 峨边| 象州县| 瑞昌市| 长葛市| 井冈山市| 南召县| 扬中市| 肥东县|