找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 22nd International C Min Song,Il-Yeol Song,Ismail Khalil Conference proceedings 2020 Springer N

[復(fù)制鏈接]
樓主: miserly
41#
發(fā)表于 2025-3-28 16:09:32 | 只看該作者
42#
發(fā)表于 2025-3-28 22:16:55 | 只看該作者
43#
發(fā)表于 2025-3-28 23:43:16 | 只看該作者
High-Utility Interval-Based Sequencesdered point-based data where events occur instantaneously. However, in many application domains, events persist over intervals of time of varying lengths. Furthermore, traditional frameworks for sequential pattern mining assume all events have the same weight or utility. This simplifying assumption
44#
發(fā)表于 2025-3-29 03:20:51 | 只看該作者
Extreme-SAX: Extreme Points Based Symbolic Representation for Time Series Classification high dimensional, dimensionality reduction techniques have been proposed as an efficient approach to lower their dimensionality. One of the most popular dimensionality reduction techniques of time series data is the Symbolic Aggregate Approximation (SAX), which is inspired by algorithms from text m
45#
發(fā)表于 2025-3-29 08:23:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:05:12 | 只看該作者
47#
發(fā)表于 2025-3-29 17:59:39 | 只看該作者
48#
發(fā)表于 2025-3-29 21:11:38 | 只看該作者
Mining Attribute Evolution Rules in Dynamic Attributed Graphsfound in numerous domains, e.g., social network analysis. Several studies have been done on discovering patterns in dynamic attributed graphs to reveal how attribute(s) change over time. However, many algorithms restrict all attribute values in a pattern to follow the same trend (e.g. increase) and
49#
發(fā)表于 2025-3-30 02:51:52 | 只看該作者
Sustainable Development Goal Relational Modelling: Introducing the SDG-CAP Methodologysideration the potential relationships between time series associated with individual SDGs, unlike previous work where an independence assumption was made. The challenge is in identifying the existence of relationships and then using these relationships to make SDG attainment predictions. To this en
50#
發(fā)表于 2025-3-30 07:30:49 | 只看該作者
https://doi.org/10.1007/978-3-030-59065-9artificial intelligence; association rules; big data; clustering algorithms; computer hardware; computer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁门县| 哈巴河县| 石泉县| 尼玛县| 江西省| 都兰县| 平原县| 邻水| 黑水县| 平遥县| 融水| 象山县| 凌云县| 正蓝旗| 日喀则市| 达日县| 德安县| 尖扎县| 松溪县| 萨迦县| 育儿| 肇州县| 武城县| 石屏县| 东丽区| 阜阳市| 蒙城县| 盱眙县| 漳浦县| 新蔡县| 揭西县| 平塘县| 金昌市| 奈曼旗| 东光县| 太仆寺旗| 富锦市| 乌兰察布市| 铜陵市| 象州县| 高州市|