找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics; Second International Vasudha Bhatnagar,Srinath Srinivasa Conference proceedings 2013 Springer International Publishing

[復制鏈接]
樓主: 去是公開
41#
發(fā)表于 2025-3-28 16:49:39 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/185599.jpg
42#
發(fā)表于 2025-3-28 20:24:03 | 只看該作者
Tutorial : Social Media Analyticsiew the state of the art as well as present new ideas on handling common research problems like Event Detection from Social Media, Summarization, Location Inference and fusing external data sources with social data. The tutorial would assume basic knowledge of Data Mining, Text Analytics and NLP Methods.
43#
發(fā)表于 2025-3-29 02:04:54 | 只看該作者
Conference proceedings 2013ysore, India, in December 2013. The 13 revised full papers were carefully reviewed and selected from 49 submissions and cover topics on mining social media data, perspectives on big data analysis, graph analysis, big data in practice.
44#
發(fā)表于 2025-3-29 04:19:35 | 只看該作者
45#
發(fā)表于 2025-3-29 10:21:50 | 只看該作者
John Kingdom,Philip Baker,Eve Blairiew the state of the art as well as present new ideas on handling common research problems like Event Detection from Social Media, Summarization, Location Inference and fusing external data sources with social data. The tutorial would assume basic knowledge of Data Mining, Text Analytics and NLP Methods.
46#
發(fā)表于 2025-3-29 12:16:55 | 只看該作者
https://doi.org/10.1007/978-3-319-03689-2Twitter; complex networks; graph algorithms; machine learning; social web; algorithm analysis and problem
47#
發(fā)表于 2025-3-29 19:13:26 | 只看該作者
978-3-319-03688-5Springer International Publishing Switzerland 2013
48#
發(fā)表于 2025-3-29 23:39:02 | 只看該作者
49#
發(fā)表于 2025-3-30 02:23:36 | 只看該作者
The Role of Incentive-Based Crowd-Driven Data Collection in Big Data Analytics: A Perspectivee also provide some directions about the kind of analytics that can be done on the crowd-collected data in case of different application scenarios. Furthermore, we discuss some of the open research issues in this area.
50#
發(fā)表于 2025-3-30 07:35:47 | 只看該作者
Discovering Quasi-Periodic-Frequent Patterns in Transactional Databasesled quasi-periodic-frequent patterns. Informally, a frequent pattern is said to be . if most of its occurrences are periodic in a database. We propose a model and a pattern-growth algorithm to discover these patterns. The proposed patterns do not satisfy the downward closure property. We have introd
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
九寨沟县| 大厂| 木兰县| 定安县| 张家川| 酉阳| 正镶白旗| 钦州市| 仲巴县| 铜山县| 阳信县| 仪陇县| 外汇| 呼和浩特市| 临颍县| 固安县| 临清市| 保山市| 从化市| 敖汉旗| 松原市| 曲麻莱县| 武平县| 都匀市| 翁牛特旗| 延吉市| 平乐县| 县级市| 安丘市| 四川省| 易门县| 财经| 上林县| 罗江县| 湖北省| 太康县| 临邑县| 土默特左旗| 高州市| 崇阳县| 龙门县|