找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation: Analysis, Algorithms, Applications; Proceedings of the C T. Küpper,R. Seydel,H. Troger Conference proceedings 1987 Birkh?user

[復(fù)制鏈接]
樓主: Addendum
21#
發(fā)表于 2025-3-25 06:21:41 | 只看該作者
https://doi.org/10.1007/978-3-531-19845-3We consider ordinary differential equations of the form.with a diagonal matrix D(σ) = diag[1,…,σ,…,1] which differs from the unit matrix by an entry σ in the row (and column) i.. Here τ ε ? and σ>0 are considered as bifurcation parameters. Note that stationary solutions of (0.1) satisfy.and are thus independent of σ.
22#
發(fā)表于 2025-3-25 10:23:58 | 只看該作者
https://doi.org/10.1007/978-3-531-19845-3We consider a m-parameter C. -family of ordinary differential equations possessing an invariant n-dimensional torus.
23#
發(fā)表于 2025-3-25 12:37:23 | 只看該作者
F. Unger,H. M?rl,H. A. DieterichLyapunov exponents are normally used to characterize the behavior of dynamic systems, either if the system is continuous or discrete. It is shown that Lyapunov exponents are equally applicable for the study of bifurcation problems to obtain both bifurcation diagrams and stability charts.
24#
發(fā)表于 2025-3-25 19:50:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:29:50 | 只看該作者
26#
發(fā)表于 2025-3-26 03:15:49 | 只看該作者
A quick multiparameter test for periodic solutions,We consider ordinary differential equations of the form.with a diagonal matrix D(σ) = diag[1,…,σ,…,1] which differs from the unit matrix by an entry σ in the row (and column) i.. Here τ ε ? and σ>0 are considered as bifurcation parameters. Note that stationary solutions of (0.1) satisfy.and are thus independent of σ.
27#
發(fā)表于 2025-3-26 07:48:27 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:50 | 只看該作者
30#
發(fā)表于 2025-3-26 18:11:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德昌县| 苏尼特右旗| 西安市| 石门县| 江山市| 上栗县| 黑河市| 绥德县| 盐源县| 长乐市| 日喀则市| 德昌县| 靖州| 郑州市| 招远市| 哈密市| 响水县| 六枝特区| 尉氏县| 丹棱县| 台东县| 嘉禾县| 峨边| 山阴县| 始兴县| 宾川县| 江源县| 五华县| 通海县| 六盘水市| 曲麻莱县| 德庆县| 建宁县| 谷城县| 平顶山市| 南昌县| 苍山县| 都江堰市| 达孜县| 蓬安县| 石首市|