找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation: Analysis, Algorithms, Applications; Proceedings of the C T. Küpper,R. Seydel,H. Troger Conference proceedings 1987 Birkh?user

[復(fù)制鏈接]
樓主: Addendum
21#
發(fā)表于 2025-3-25 06:21:41 | 只看該作者
https://doi.org/10.1007/978-3-531-19845-3We consider ordinary differential equations of the form.with a diagonal matrix D(σ) = diag[1,…,σ,…,1] which differs from the unit matrix by an entry σ in the row (and column) i.. Here τ ε ? and σ>0 are considered as bifurcation parameters. Note that stationary solutions of (0.1) satisfy.and are thus independent of σ.
22#
發(fā)表于 2025-3-25 10:23:58 | 只看該作者
https://doi.org/10.1007/978-3-531-19845-3We consider a m-parameter C. -family of ordinary differential equations possessing an invariant n-dimensional torus.
23#
發(fā)表于 2025-3-25 12:37:23 | 只看該作者
F. Unger,H. M?rl,H. A. DieterichLyapunov exponents are normally used to characterize the behavior of dynamic systems, either if the system is continuous or discrete. It is shown that Lyapunov exponents are equally applicable for the study of bifurcation problems to obtain both bifurcation diagrams and stability charts.
24#
發(fā)表于 2025-3-25 19:50:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:29:50 | 只看該作者
26#
發(fā)表于 2025-3-26 03:15:49 | 只看該作者
A quick multiparameter test for periodic solutions,We consider ordinary differential equations of the form.with a diagonal matrix D(σ) = diag[1,…,σ,…,1] which differs from the unit matrix by an entry σ in the row (and column) i.. Here τ ε ? and σ>0 are considered as bifurcation parameters. Note that stationary solutions of (0.1) satisfy.and are thus independent of σ.
27#
發(fā)表于 2025-3-26 07:48:27 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:50 | 只看該作者
30#
發(fā)表于 2025-3-26 18:11:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
页游| 离岛区| 溧水县| 浮梁县| 德阳市| 张家界市| 通山县| 婺源县| 台东市| 广河县| 茌平县| 明星| 苍梧县| 阜城县| 增城市| 连南| 饶河县| 越西县| 霸州市| 枣庄市| 绵竹市| 丰宁| 七台河市| 阿瓦提县| 广州市| 文山县| 教育| 敦化市| 八宿县| 桐乡市| 临桂县| 乌恰县| 巴林左旗| 遵义县| 道真| 郧西县| 岳西县| 安陆市| 仁化县| 稻城县| 岗巴县|