找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations of Planar Vector Fields and Hilbert‘s Sixteenth Problem; Robert Roussarie Book 1998 Springer Basel 1998 bifurcation diagrams.

[復制鏈接]
樓主: 投降
11#
發(fā)表于 2025-3-23 09:57:24 | 只看該作者
Treatment of Discogenic Back Pain 0-dimensional parameter space. We will present two fundamentals tools: the desingularization and the asymptotic expansion of the return map along a limit periodic set. In the particular case of an individual vector field these techniques give the desired final result: the desingularization theorem
12#
發(fā)表于 2025-3-23 17:21:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:57:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:54 | 只看該作者
16#
發(fā)表于 2025-3-24 09:06:33 | 只看該作者
Treatment of Discogenic Back Paine there is no accumulation of limit cycles in the phase space. In other words, the cyclicity of each limit periodic set is less than one and any analytic vector field on the sphere has only a finite number of limit cycles.
17#
發(fā)表于 2025-3-24 14:31:00 | 只看該作者
The 0-Parameter Case,e there is no accumulation of limit cycles in the phase space. In other words, the cyclicity of each limit periodic set is less than one and any analytic vector field on the sphere has only a finite number of limit cycles.
18#
發(fā)表于 2025-3-24 16:13:03 | 只看該作者
19#
發(fā)表于 2025-3-24 19:44:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:24:58 | 只看該作者
2197-1803 ical analytic geometric methods applied to regular limit per.In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
九江县| 许昌市| 泉州市| 临潭县| 怀远县| 阳城县| 巴林左旗| 夏邑县| 雷州市| 嵊泗县| 出国| 民县| 辛集市| 佛山市| 准格尔旗| 黔江区| 平乡县| 南丹县| 沈阳市| 德江县| 屯留县| 余干县| 海南省| 松潘县| 成安县| 烟台市| 易门县| 开原市| 阜宁县| 民县| 当涂县| 永登县| 伊金霍洛旗| 通化市| 南城县| 郸城县| 定边县| 文成县| 东阳市| 常州市| 枞阳县|