找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation and Stability in Nonlinear Dynamical Systems; Albert C. J. Luo Book 2019 Springer Nature Switzerland AG 2019 nonlinear dynamic

[復(fù)制鏈接]
樓主: Entangle
31#
發(fā)表于 2025-3-26 23:05:16 | 只看該作者
32#
發(fā)表于 2025-3-27 02:04:00 | 只看該作者
Bifurcations of Equilibrium,n of an equilibrium on a specific eigenvector plane is presented. Based on the Fourier series base, the transformation for the spiral stability is introduced for the Hopf bifurcation of equilibriums. The Hopf bifurcation of equilibriums in the second-order nonlinear dynamical systems is discussed fr
33#
發(fā)表于 2025-3-27 08:24:06 | 只看該作者
Equilibrium Stability in 1-Dimensional Systems, systems is given first, and infinite-equilibrium systems are defined. The 1-dimensional dynamical systems with single equilibrium are discussed first. The 1-dimensional dynamical systems with two and three equilibriums are discussed. Simple equilibriums and higher order equilibriums in 1-dimensiona
34#
發(fā)表于 2025-3-27 10:39:27 | 只看該作者
Low-Degree Polynomial Systems,ions of simple and higher order equilibriums are discussed, and such bifurcations of equilibriums are not only for simple equilibriums but also for higher order equilibriums. The third-order sink and source bifurcations for simple equilibriums are presented. The third-order sink and source switching
35#
發(fā)表于 2025-3-27 14:50:31 | 只看該作者
36#
發(fā)表于 2025-3-27 18:18:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:48:20 | 只看該作者
Infinite-Equilibrium Systems,al systems is developed. The generalized normal forms of nonlinear dynamical systems at equilibriums are presented for a better understanding of singularity in nonlinear dynamical systems. The dynamics of infinite-equilibrium dynamical systems is discussed for the complexity and singularity of nonli
38#
發(fā)表于 2025-3-28 05:12:25 | 只看該作者
Bifurcation and Stability in Nonlinear Dynamical Systems
39#
發(fā)表于 2025-3-28 07:28:50 | 只看該作者
Book 2019l analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control.?.Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equili
40#
發(fā)表于 2025-3-28 14:19:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丽江市| 错那县| 宣城市| 瓦房店市| 芦溪县| 鄂尔多斯市| 东台市| 广安市| 如皋市| 潮州市| 常宁市| 巴塘县| 依兰县| 新蔡县| 双流县| 麻江县| 太白县| 新巴尔虎左旗| 双城市| 抚远县| 武陟县| 平陆县| 应城市| 大竹县| 班戈县| 尼勒克县| 鄂托克旗| 甘肃省| 广饶县| 原阳县| 建平县| 平山县| 临猗县| 潜山县| 都江堰市| 永清县| 剑川县| 林口县| 商城县| 阳西县| 宝山区|