找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation and Chaos in Engineering; Yushu Chen,Andrew Y. T. Leung Book 1998 Springer-Verlag London Limited 1998 Vibration.algorithms.cal

[復制鏈接]
樓主: minuscule
11#
發(fā)表于 2025-3-23 11:24:12 | 只看該作者
https://doi.org/10.1007/978-981-10-1011-8mical behaviour of the semi-infinite time domain. The theory of the averaging method has various forms. When we describe the averaging method in the theory of bifurcation, we base our statements on the work of KBM and Hale (J.K. Hale) [30].
12#
發(fā)表于 2025-3-23 17:19:43 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:03 | 只看該作者
https://doi.org/10.1007/978-1-4471-1575-5Vibration; algorithms; calculus; chaos; design; differential equation; dynamical systems; engineering desig
14#
發(fā)表于 2025-3-24 01:57:24 | 只看該作者
978-1-4471-1577-9Springer-Verlag London Limited 1998
15#
發(fā)表于 2025-3-24 05:29:59 | 只看該作者
VOM PROBLEMBEZIRK ZUM KUNSTQUARTIER,In this chapter, section 5.1 studies another main method for the local bifurcation of dynamical systems: the Centre Manifold Theorem. In section 5.2, the centre manifold theorem is used to analyse simple bifurcation. In the section 5.3, the Normal Form theory of vector fields is introduced.
16#
發(fā)表于 2025-3-24 08:23:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:29:34 | 只看該作者
Sharon Vaughn,Ruth McIntosh,Anne HoganWe include three computational methods in this chapter, namely normal form theory, symplectic integration and the imbedded partial differential equation method.
18#
發(fā)表于 2025-3-24 16:45:22 | 只看該作者
19#
發(fā)表于 2025-3-24 19:24:03 | 只看該作者
Hopf Bifurcation,Periodic vibration phenomena can be found in many non-conservative systems in nature. Hopf bifurcation theory is a theory that studies the modern development of period vibration phenomena. In this chapter we introduce the method of studying the Hopf bifurcation of autonomous systems by the normal form theory.
20#
發(fā)表于 2025-3-25 00:26:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
江阴市| 洛隆县| 墨玉县| 化德县| 甘德县| 同江市| 金川县| 锡林浩特市| 邢台市| 徐汇区| 辉县市| 苍梧县| 多伦县| 双城市| 彰武县| 勃利县| 青田县| 汤阴县| 五莲县| 开鲁县| 辽源市| 临夏市| 饶河县| 乐安县| 福安市| 嘉定区| 温泉县| 神木县| 体育| 普洱| 城口县| 莎车县| 常州市| 广宁县| 延长县| 布尔津县| 余干县| 区。| 高要市| 上林县| 东方市|