找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
21#
發(fā)表于 2025-3-25 06:35:21 | 只看該作者
David Raffaelli,Stephen Hawkinsis highlighted as the most characteristic progress of agglomeration. This chapter, as a whole, serves as an introduction to the methodology for a more general analysis in Chaps. .–. in Part II of an economy on a hexagonal lattice with a larger and more complicated symmetry group.
22#
發(fā)表于 2025-3-25 10:01:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:47:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:02:47 | 只看該作者
Riffing on Ted Nelson—Hypermindnomy on the hexagonal lattice. Formulas for the transformation matrix for block-diagonalization of the Jacobian matrix of the equilibrium equation of the economy on the hexagonal lattice are derived and put to use in numerical bifurcation analysis of hexagonal patterns.
25#
發(fā)表于 2025-3-25 21:12:49 | 只看該作者
Najla AL-Qawasmeh,Muna Khayyat,Ching Y. Suenis presented. As a main technical contribution of this book, a complete analysis of bifurcating solutions for hexagonal distributions from critical points of multiplicity 12 is conducted. In particular, hexagons of different types are shown to emerge simultaneously at bifurcation points of multiplicity 12 of certain types.
26#
發(fā)表于 2025-3-26 03:02:54 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:50 | 只看該作者
28#
發(fā)表于 2025-3-26 08:56:46 | 只看該作者
Introduction to Economic Agglomeration on Hexagonal Latticeones envisaged by central place theory and also envisaged to emerge by Krugman, 1996 for a core–periphery model in two dimensions. The missing link between central place theory and new economic geography has thus been discovered.
29#
發(fā)表于 2025-3-26 14:25:41 | 只看該作者
30#
發(fā)表于 2025-3-26 19:16:32 | 只看該作者
Matrix Representation for Economy on Hexagonal Latticenomy on the hexagonal lattice. Formulas for the transformation matrix for block-diagonalization of the Jacobian matrix of the equilibrium equation of the economy on the hexagonal lattice are derived and put to use in numerical bifurcation analysis of hexagonal patterns.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吐鲁番市| 中方县| 大田县| 本溪市| 达州市| 津南区| 达尔| 扶余县| 香港| 祁门县| 集安市| 迁安市| 临湘市| 宁夏| 安西县| 凤凰县| 达日县| 花垣县| 内江市| 新蔡县| 丰宁| 郑州市| 库车县| 呼玛县| 绵阳市| 手游| 沅陵县| 鄂托克旗| 金沙县| 兴仁县| 桑日县| 陇南市| 苍溪县| 青州市| 华容县| 涡阳县| 南开区| 康平县| 南乐县| 额济纳旗| 莲花县|