找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bicomplex Holomorphic Functions; The Algebra, Geometr M. Elena Luna-Elizarrarás,Michael Shapiro,Adrian V Book 2015 Springer International P

[復制鏈接]
樓主: AMUSE
11#
發(fā)表于 2025-3-23 10:57:07 | 只看該作者
Second Order Complex and Hyperbolic Differential Operators,ex variable theory and Clifford analysis are considered as refinements of the corresponding harmonic function theories. This relation is due to the following factorizations of the respective Laplace operators.
12#
發(fā)表于 2025-3-23 16:55:27 | 只看該作者
Motivating a Therapeutic Approach in 1844, [36], [37]. Quaternions arise by considering three imaginary units, i, j, k that anticommute and such that ij = k. The beauty of the theory of quaternions is that they form a field, where all the customary operations can be accomplished. Their blemish, if one can use this word, is the loss
13#
發(fā)表于 2025-3-23 19:04:44 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:57:09 | 只看該作者
An American Landscape Conversationcial importance for the theories of both classes of functions. On the general level, the same occurs with hyperholomorphic (synonymously - monogenic, regular) functions of (real) Clifford analysis and the harmonic functions of the respective number of (real) variables. By this reason, both one compl
16#
發(fā)表于 2025-3-24 07:14:44 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
17#
發(fā)表于 2025-3-24 13:46:42 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:59 | 只看該作者
19#
發(fā)表于 2025-3-24 19:29:46 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
20#
發(fā)表于 2025-3-24 23:47:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
同心县| 建瓯市| 丹东市| 许昌市| 泾阳县| 前郭尔| 安国市| 永胜县| 金沙县| 衡南县| 西乌珠穆沁旗| 鸡泽县| 墨竹工卡县| 灵丘县| 顺义区| 长武县| 辉县市| 江安县| 临颍县| 绥化市| 巴林左旗| 柳林县| 六盘水市| 刚察县| 常宁市| 酒泉市| 凤庆县| 呼伦贝尔市| 青岛市| 徐汇区| 临湘市| 巴中市| 宝兴县| 桐柏县| 资溪县| 仙游县| 仪征市| 东丽区| 依安县| 兰坪| 三穗县|