找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession; The Theory of Gyrogr Abraham A. Ungar Book 2002 Springer Science+Bus

[復(fù)制鏈接]
查看: 42466|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:35:39 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession
期刊簡稱The Theory of Gyrogr
影響因子2023Abraham A. Ungar
視頻videohttp://file.papertrans.cn/186/185326/185326.mp4
學(xué)科分類Fundamental Theories of Physics
圖書封面Titlebook: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession; The Theory of Gyrogr Abraham A. Ungar Book 2002 Springer Science+Bus
影響因子Evidence that Einstein‘s addition is regulated by the Thomas precession has come to light, turning the notorious Thomas precession, previously considered the ugly duckling of special relativity theory, into the beautiful swan of gyrogroup and gyrovector space theory, where it has been extended by abstraction into an automorphism generator, called the .Thomas gyration.. The Thomas gyration, in turn, allows the introduction of vectors into hyperbolic geometry, where they are called .gyrovectors., in such a way that Einstein‘s velocity additions turns out to be a gyrovector addition. Einstein‘s addition thus becomes a gyrocommutative, gyroassociative gyrogroup operation in the same way that ordinary vector addition is a commutative, associative group operation. Some gyrogroups of gyrovectors admit scalar multiplication, giving rise to gyrovector spaces in the same way that some groups of vectors that admit scalar multiplication give rise to vector spaces. Furthermore, gyrovector spaces form the setting for hyperbolic geometry in the same way that vector spaces form the setting for Euclidean geometry. In particular, the gyrovector space with gyrovector addition given by Einstein‘s (M?b
Pindex Book 2002
The information of publication is updating

書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession影響因子(影響力)




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession影響因子(影響力)學(xué)科排名




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession網(wǎng)絡(luò)公開度




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession被引頻次




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession被引頻次學(xué)科排名




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession年度引用




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession年度引用學(xué)科排名




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession讀者反饋




書目名稱Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:07:40 | 只看該作者
地板
發(fā)表于 2025-3-22 06:46:56 | 只看該作者
5#
發(fā)表于 2025-3-22 11:09:38 | 只看該作者
https://doi.org/10.1007/0-306-47134-5Vector space; automorphism; geometry; relativity; special relativity; theory of relativity
6#
發(fā)表于 2025-3-22 16:43:01 | 只看該作者
7#
發(fā)表于 2025-3-22 20:40:55 | 只看該作者
Book 2002ctors that admit scalar multiplication give rise to vector spaces. Furthermore, gyrovector spaces form the setting for hyperbolic geometry in the same way that vector spaces form the setting for Euclidean geometry. In particular, the gyrovector space with gyrovector addition given by Einstein‘s (M?b
8#
發(fā)表于 2025-3-23 00:45:57 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:21 | 只看該作者
Beyond the Einstein Addition Law and its Gyroscopic Thomas PrecessionThe Theory of Gyrogr
10#
發(fā)表于 2025-3-23 07:55:45 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岚皋县| 涡阳县| 中阳县| 江北区| 通渭县| 商南县| 新源县| 湖北省| 佛学| 韩城市| 扎囊县| 沅江市| 临朐县| 柳州市| 布尔津县| 斗六市| 富川| 寿光市| 台州市| 大冶市| 定日县| 陵川县| 平江县| 加查县| 莫力| 肇东市| 台山市| 岳阳市| 安陆市| 图木舒克市| 陈巴尔虎旗| 揭阳市| 乌拉特后旗| 乐东| 达拉特旗| 房山区| 武平县| 无为县| 涞源县| 商洛市| 眉山市|