找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession; The Theory of Gyrogr Abraham A. Ungar Book 2001 Springer Science+Bus

[復制鏈接]
樓主: 導彈
31#
發(fā)表于 2025-3-26 23:06:26 | 只看該作者
Thomas Precession: The Missing Link,arts, the theory of groups and the theory of vector spaces. Readers who wish to start familiarizing themselves with the theory may, therefore, start reading this book from its second chapter and return to the first chapter only if and when their curiosity about the origin of the Thomas precession arises.
32#
發(fā)表于 2025-3-27 03:22:48 | 只看該作者
The Ungar Gyrovector Space,ity through more than a single model. In this chapter we propose to study special relativity in terms of proper velocities, which are determined by proper time ., leading us to consider a new, interesting model of hyperbolic geometry.
33#
發(fā)表于 2025-3-27 07:40:05 | 只看該作者
Other Lorentz Groups,andard Lorentz group of special relativity theory, is presented in Chapter 10. In this chapter we will present a nonstandard Lorentz group, which is based on the Ungar gyrogroup of relativity velocities.
34#
發(fā)表于 2025-3-27 12:39:40 | 只看該作者
35#
發(fā)表于 2025-3-27 14:53:08 | 只看該作者
36#
發(fā)表于 2025-3-27 19:35:42 | 只看該作者
37#
發(fā)表于 2025-3-28 01:42:19 | 只看該作者
38#
發(fā)表于 2025-3-28 03:20:16 | 只看該作者
The Einstein Gyrovector Space,ctors are represented. We close the chapter with the observation that the unique hyperbolic ‘straight line’ called a geodesic, passing through two given points a, b ∈ V. is the set of all points .of V., t ∈ ?, ?.a = ?a, which is analogous to its counterpart in Euclidean analytic geometry.
39#
發(fā)表于 2025-3-28 09:23:29 | 只看該作者
40#
發(fā)表于 2025-3-28 12:40:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丰都县| 南乐县| 宝坻区| 福建省| 丰宁| 正蓝旗| 光泽县| 綦江县| 阿克苏市| 留坝县| 泸州市| 芦溪县| 新晃| 辉县市| 高尔夫| 黎平县| 兴安县| 崇仁县| 嫩江县| 德安县| 太谷县| 崇文区| 灌阳县| 青海省| 孝感市| 阜南县| 千阳县| 台南县| 城口县| 聂拉木县| 双辽市| 宜宾县| 佳木斯市| 从江县| 和田县| 台州市| 庆城县| 漠河县| 丹江口市| 贡山| 房山区|