找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession; The Theory of Gyrogr Abraham A. Ungar Book 2001 Springer Science+Bus

[復制鏈接]
樓主: 導彈
11#
發(fā)表于 2025-3-23 12:41:54 | 只看該作者
https://doi.org/10.1007/978-3-319-38939-4ion. Reading this chapter would be useful for readers who are familiar, or wish to familiarize themselves, with the standard .(2,.) formalism and its Pauli spin matrices, and who wish to see how these lead to gyrogroups and gyrovector spaces. Starting from the Pauli spin matrices and a brief descrip
12#
發(fā)表于 2025-3-23 14:00:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:15:51 | 只看該作者
https://doi.org/10.1007/978-3-319-38939-4ay to the mainstream literature. Therefore, thirty three years later, two of them suggested considering the “notorious Thomas precession formula” (in their words, p. 431 in [RR99]) as an indicator of the quality of a formalism for dealing with the Lorentz group. The idea of Rindler and Robinson to u
14#
發(fā)表于 2025-3-24 01:01:02 | 只看該作者
15#
發(fā)表于 2025-3-24 03:18:58 | 只看該作者
16#
發(fā)表于 2025-3-24 07:36:04 | 只看該作者
17#
發(fā)表于 2025-3-24 11:21:23 | 只看該作者
Hyperbolic Geometry of Gyrovector Spaces,The ability of Thomas precession to unify Euclidean and hyperbolic geometry is further demonstrated in this chapter by the introduction of (i) hyperbolic rooted vectors, called rooted gyrovectors; (ii) equivalence relation between rooted gyrovectors; and (iii) translations between rooted gyrovectors, called gyrovector translations.
18#
發(fā)表于 2025-3-24 16:38:10 | 只看該作者
The Lorentz Transformation Link,The Lorentz transformation of spacetime coordinates was developed by Lorentz [Lor95] [Lorl4] [Lor16] [Lor21] [LAH23] [Poi05] from a paper of Voigt, as confirmed by Lorentz himself [Lor21], and was efficiently applied at the early development of special relativity theory by Poincaré [Poi05].
19#
發(fā)表于 2025-3-24 19:09:29 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:38 | 只看該作者
Gyrogeometry,n gives rise. We indicate in this chapter that gyrogeometry is the super geometry that naturally unifies Euclidean and hyperbolic geometry. The classical hyperbolic geometry of Bolyai and Lobachevski emerges in gyrogeometry with a companion, called cohyperbolic geometry.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绩溪县| 濉溪县| 新建县| 大同市| 天祝| 筠连县| 通河县| 安丘市| 渑池县| 故城县| 凤翔县| 江津市| 松江区| 麻栗坡县| 娱乐| 乐陵市| 营口市| 晴隆县| 资兴市| 五寨县| 蓬溪县| 正镶白旗| 赤壁市| 寿阳县| 霞浦县| 开远市| 井冈山市| 石柱| 交城县| 万安县| 津市市| 高邑县| 拜泉县| 内黄县| 正安县| 新平| 安康市| 吕梁市| 中阳县| 正镶白旗| 尤溪县|