找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Quasicrystals; Les Houches, March 7 Fran?oise Axel,Denis Gratias Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 1995

[復(fù)制鏈接]
樓主: quick-relievers
41#
發(fā)表于 2025-3-28 16:56:03 | 只看該作者
42#
發(fā)表于 2025-3-28 19:07:47 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:30 | 只看該作者
44#
發(fā)表于 2025-3-29 05:17:37 | 只看該作者
Sanctions outside Organisational Frameworks,als. In the typical examples the potentials are generated by substitutional sequences, like the Fibonacci or the Thue-Morse sequence. We concentrate on rigorous results which will be explained rather than proved. The necessary mathematical background is provided in the text.
45#
發(fā)表于 2025-3-29 10:46:46 | 只看該作者
46#
發(fā)表于 2025-3-29 12:43:20 | 只看該作者
47#
發(fā)表于 2025-3-29 17:39:47 | 只看該作者
https://doi.org/10.1007/978-3-319-54036-8A natural question about a sequence taking its values in a finite alphabet, is the following: how far from a random sequence is it and which appropriate quantitative analysis can we imagine?
48#
發(fā)表于 2025-3-29 20:48:57 | 只看該作者
49#
發(fā)表于 2025-3-30 00:27:00 | 只看該作者
Quasicrystals, Diophantine approximation and algebraic numbersQuasicrystals can be characterized by a remarkable Diophantine approximation property. This permits to define the dual quasicrystal Λ* as the collection of . in ?. such that |..?1| ≤ 1 for each . in the given quasicrystal Λ. In many cases one obtains Λ** = Λ and this duality is nicely related to the spectral properties of quasicrystals.
50#
發(fā)表于 2025-3-30 07:40:52 | 只看該作者
Spectral study of automatic and substitutive sequencesA natural question about a sequence taking its values in a finite alphabet, is the following: how far from a random sequence is it and which appropriate quantitative analysis can we imagine?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田市| 扬州市| 左权县| 固始县| 泸溪县| 旺苍县| 拜泉县| 土默特左旗| 玉门市| 边坝县| 上饶县| 永济市| 汶上县| 马边| 新干县| 苏尼特右旗| 桃园县| 榆林市| 淮滨县| 陆川县| 大化| 利辛县| 石嘴山市| 青川县| 晋宁县| 清水河县| 江达县| 武定县| 乌海市| 蓬莱市| 罗平县| 廊坊市| 德安县| 泸溪县| 安仁县| 五峰| 孝义市| 乾安县| 象山县| 涡阳县| 昌图县|