找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bernstein Operators and Their Properties; Jorge Bustamante Book 2017 Springer International Publishing AG 2017 Bernstein operators.moduli

[復制鏈接]
21#
發(fā)表于 2025-3-25 05:40:43 | 只看該作者
Bernstein Polynomials as Linear Operators,Recall that, if (.,?∥?°?∥?.) and (.,?∥?°?∥?.) are normed spaces and .:?.?→?. is a continuous linear operator, then the norm of . is defined as . Moreover, a linear operator .:?.?→?. is continuous if and only if?∥?.?∥?.?
22#
發(fā)表于 2025-3-25 10:51:01 | 只看該作者
Upper Error Estimates of Bernstein Operators,In the first section of this chapter we present some auxiliary results. Concretely, we give some properties concerning positive linear operators.
23#
發(fā)表于 2025-3-25 15:07:02 | 只看該作者
Bernstein-Type Inequalities,For studying inverse results it is important to have on hand some particular expressions for the derivatives of Bernstein operators, as well as various estimates involving these derivatives. We first study pointwise estimates. As before, we set ..
24#
發(fā)表于 2025-3-25 16:13:30 | 只看該作者
25#
發(fā)表于 2025-3-25 21:02:37 | 只看該作者
Iterates of Bernstein Polynomials,For .?∈?.[0,?1] and ., one has
26#
發(fā)表于 2025-3-26 01:07:24 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:57 | 只看該作者
Final Comments,For complex functions we do not find such a good variety of results as the ones presented in previous chapters. For instance, there are no converse results.
28#
發(fā)表于 2025-3-26 09:26:17 | 只看該作者
29#
發(fā)表于 2025-3-26 13:46:39 | 只看該作者
https://doi.org/10.1007/978-3-319-55402-0Bernstein operators; moduli of smoothness; rate of approximation; Bernstein inequality; sub-additive maj
30#
發(fā)表于 2025-3-26 19:49:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宜昌市| 江西省| 双桥区| 柳河县| 双鸭山市| 柳河县| 广安市| 盐亭县| 邳州市| 崇信县| 油尖旺区| 淅川县| 成安县| 宜宾县| 道真| 建平县| 金阳县| 景宁| 漳平市| 左贡县| 乐陵市| 本溪| 吉水县| 丘北县| 灌云县| 呼玛县| 贵定县| 武川县| 武宁县| 咸丰县| 白银市| 昌黎县| 吴江市| 古蔺县| 维西| 进贤县| 永丰县| 五河县| 赤壁市| 蛟河市| 竹山县|