找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bernoulli Numbers and Zeta Functions; Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko Book 2014 Springer Japan 2014 Bernoulli numbers a

[復(fù)制鏈接]
樓主: 挑染
11#
發(fā)表于 2025-3-23 13:35:44 | 只看該作者
The Barnes Multiple Zeta Function,In this chapter, we introduce Barnes’ multiple zeta function, which is a natural generalization of the Hurwitz zeta function, give an analytic continuation, and then express their special values at negative integers by using Bernoulli polynomials.
12#
發(fā)表于 2025-3-23 14:40:39 | 只看該作者
Poly-Bernoulli Numbers,In this chapter, we define and study a generalization of Bernoulli numbers referred to as poly-Bernoulli numbers, which is a different generalization than the generalized Bernoulli numbers introduced in Chap. 4.
13#
發(fā)表于 2025-3-23 18:49:51 | 只看該作者
https://doi.org/10.1007/978-4-431-54919-2Bernoulli numbers and polynomials; L-functions; MSC; 11B68, 11B73, 11M06, 11L03, 11M06, 11M32, 11M35; R
14#
發(fā)表于 2025-3-23 22:53:58 | 只看該作者
15#
發(fā)表于 2025-3-24 06:19:59 | 只看該作者
The Relevance of Medicine in Footballl part” of .. is given by the following theorem. This result gives a foundation for studying .-adic properties of the Bernoulli numbers. It also plays a fundamental role in the theory of .-adic modular forms through the Eisenstein series [82].
16#
發(fā)表于 2025-3-24 06:39:35 | 只看該作者
17#
發(fā)表于 2025-3-24 12:21:56 | 只看該作者
Interviews with Injured Athletes so-called prehomogeneous vector spaces. We also prove a class number formula of imaginary quadratic fields. Before that, we review the theory of multiplicative structure of ideals of quadratic field without proof.
18#
發(fā)表于 2025-3-24 15:15:58 | 只看該作者
Structural properties of families,e Bernoulli numbers in connection to the study of the sums of powers of consecutive integers .. After listing the formulas for the sums of powers. up to .?=?10 (Bernoulli expresses the right-hand side without factoring), he gives a general formula involving the numbers which are known today as Berno
19#
發(fā)表于 2025-3-24 22:54:28 | 只看該作者
The Relevance of Medicine in Footballl part” of .. is given by the following theorem. This result gives a foundation for studying .-adic properties of the Bernoulli numbers. It also plays a fundamental role in the theory of .-adic modular forms through the Eisenstein series [82].
20#
發(fā)表于 2025-3-24 23:21:48 | 只看該作者
Marta Massada,Gino Kerkoffs,Paulo Amado Dirichlet character, which we define at the beginning of the first section. Bernoulli polynomials are generalizations of Bernoulli numbers with an indeterminate. These two generalizations are related, and they will appear in various places in the following chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
观塘区| 黔西县| 龙州县| 通化市| 海兴县| 陇南市| 蓬安县| 松原市| 田阳县| 临安市| 包头市| 巴楚县| 公安县| 平利县| 苍南县| 黔西县| 阿克苏市| 马尔康县| 苏尼特右旗| 安图县| 株洲市| 玉门市| 长岛县| 八宿县| 诏安县| 江门市| 白银市| 开化县| 庆云县| 云梦县| 梅州市| 宜川县| 池州市| 太康县| 仙桃市| 沛县| 桓台县| 铜梁县| 凤庆县| 东乌| 宕昌县|