找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bergman’s Linear Integral Operator Method in the Theory of Compressible Fluid Flow; M. Z. Krzywoblocki Book 1960 Springer-Verlag Wien 1960

[復(fù)制鏈接]
樓主: metabolism
31#
發(fā)表于 2025-3-26 21:45:11 | 只看該作者
List of Tables,Some tables will be given below. No attempt will be made to include long tables of various functions and coefficients which may be found in special papers by Bergman, as listed in Part VIII.
32#
發(fā)表于 2025-3-27 03:04:59 | 只看該作者
33#
發(fā)表于 2025-3-27 08:38:08 | 只看該作者
Errata in Previous Papers,A few errors and misprints were found here and there in previous papers. They will be corrected below, the numbers in brackets referring to the list of references at the end of the book.
34#
發(fā)表于 2025-3-27 12:17:06 | 只看該作者
35#
發(fā)表于 2025-3-27 15:35:21 | 只看該作者
36#
發(fā)表于 2025-3-27 20:04:02 | 只看該作者
37#
發(fā)表于 2025-3-27 23:51:56 | 只看該作者
General Remarks,). But for a mathematically advanced reader, it is obvious that the method presents some further possibilities which may be realized in the future. In the present section we shall briefly present a few of them.
38#
發(fā)表于 2025-3-28 05:19:12 | 只看該作者
39#
發(fā)表于 2025-3-28 08:38:26 | 只看該作者
Transonic Flow, regions. The complexity of the problem is the origin of several methods of solutions. Below, we shall try to outline and discuss a few of them. In the second half of this part a more general discussion of the problem of transonic flow will be presented without deriving the proofs which a reader who
40#
發(fā)表于 2025-3-28 11:11:11 | 只看該作者
Axially Symmetric Flow,ow past bodies of revolution. Let ., ., χ denote the cylindrical coordinates with the .-axis coincident with the axis of symmetry of the flow. The velocity vector then no longer depends on the rotation angle χ, but rather entirely on . and ., and always lies in a meridian plane (plane through the .-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马山县| 扬中市| 谢通门县| 湄潭县| 平安县| 永昌县| 临高县| 花垣县| 康平县| 大洼县| 阜城县| 横山县| 商城县| 宝应县| 张掖市| 北京市| 文山县| 桦川县| 板桥市| 宜春市| 拉孜县| 牡丹江市| 门头沟区| 凤翔县| 上犹县| 开江县| 正定县| 兴山县| 新源县| 霍林郭勒市| 万源市| 砚山县| 克东县| 德州市| 南岸区| 广宗县| 南陵县| 会昌县| 祥云县| 沁源县| 登封市|