找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Benchmarking, Measuring, and Optimizing; Second BenchCouncil Wanling Gao,Jianfeng Zhan,Dan Stanzione Conference proceedings 2020 Springer

[復(fù)制鏈接]
查看: 36369|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:23:29 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Benchmarking, Measuring, and Optimizing
期刊簡稱Second BenchCouncil
影響因子2023Wanling Gao,Jianfeng Zhan,Dan Stanzione
視頻videohttp://file.papertrans.cn/184/183393/183393.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Benchmarking, Measuring, and Optimizing; Second BenchCouncil  Wanling Gao,Jianfeng Zhan,Dan Stanzione Conference proceedings 2020 Springer
影響因子.This book constitutes the refereed proceedings of the Second International Symposium on Benchmarking, Measuring, and Optimization, Bench 2019, held in Denver, CO, USA, in November 2019...The 20 full papers and 11 short papers presented were carefully reviewed and selected from 79 submissions...The papers are organized in topical sections named: Best Paper Session; AI Challenges on Cambircon using AIBenc; AI Challenges on RISC-V using AIBench; AI Challenges on X86 using AIBench; AI Challenges on 3D Face Recognition using AIBench; Benchmark; AI and Edge; Big Data; Datacenter; Performance Analysis; Scientific Computing..
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Benchmarking, Measuring, and Optimizing影響因子(影響力)




書目名稱Benchmarking, Measuring, and Optimizing影響因子(影響力)學(xué)科排名




書目名稱Benchmarking, Measuring, and Optimizing網(wǎng)絡(luò)公開度




書目名稱Benchmarking, Measuring, and Optimizing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Benchmarking, Measuring, and Optimizing被引頻次




書目名稱Benchmarking, Measuring, and Optimizing被引頻次學(xué)科排名




書目名稱Benchmarking, Measuring, and Optimizing年度引用




書目名稱Benchmarking, Measuring, and Optimizing年度引用學(xué)科排名




書目名稱Benchmarking, Measuring, and Optimizing讀者反饋




書目名稱Benchmarking, Measuring, and Optimizing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:41:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:02:17 | 只看該作者
Early Experience in Benchmarking Edge AI Processors with Object Detection?Workloadse applications, especially for Edge Computing scenarios, due to its high power consumption and high cost. Thus, researchers and engineers have spent a lot of effort on designing edge-side artificial intelligence (AI) processors recently. Because of different edge-side application requirements, edge
地板
發(fā)表于 2025-3-22 04:34:00 | 只看該作者
5#
發(fā)表于 2025-3-22 11:23:56 | 只看該作者
6#
發(fā)表于 2025-3-22 14:28:22 | 只看該作者
Exploring the Performance Bound of Cambricon Accelerator in End-to-End Inference Scenarioient hardware accelerators for machine learning, especially for deep learning, covering from edge embedded devices to cloud data centers. However, in the real application scenario, the complicated software stack and the extra overhead (memory copy) hinder the full exploitation of the accelerator per
7#
發(fā)表于 2025-3-22 17:27:15 | 只看該作者
Improve Image Classification by Convolutional Network on Cambricon issue. In this paper, we exploit, evaluate and validate the performance of the ResNet101 image classification network on Cambricon with Cambricon Caffe framework, demonstrating the availability and ease of use of this system. Experiments with various operational modes and the processes of model inf
8#
發(fā)表于 2025-3-23 01:05:29 | 只看該作者
RVTensor: A Light-Weight Neural Network Inference Framework Based on the RISC-V Architectureas attracted the attention of IoT vendors. However, research on the IoT scenario inference framework based on the RISC-V architecture is rare. Popular frame-works such as MXNet, TensorFlow, and Caffe are based on the X86 and ARM architectures, and they are not optimized for the IoT scenarios. We pro
9#
發(fā)表于 2025-3-23 04:33:25 | 只看該作者
10#
發(fā)表于 2025-3-23 06:45:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南澳县| 铜梁县| 井研县| 茶陵县| 乐至县| 余干县| 三台县| 绥棱县| 额济纳旗| 淮北市| 化隆| 贵阳市| 穆棱市| 澄城县| 双城市| 荔浦县| 通海县| 宜兰县| 东明县| 仁布县| 固安县| 周口市| 洛南县| 齐齐哈尔市| 望谟县| 巩留县| 成安县| 长乐市| 镇雄县| 锦屏县| 双江| 游戏| 托克托县| 淄博市| 鹤山市| 隆安县| 邻水| 毕节市| 固始县| 开平市| 化德县|