找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Revision in Non-Classical Logics; Márcio Moretto Ribeiro Book 2013 The Author(s) 2013 AGM Theory.Belief Revision.Knowledge Represen

[復(fù)制鏈接]
樓主: cerebral-cortex
21#
發(fā)表于 2025-3-25 06:03:52 | 只看該作者
Consequence,a logic as a pair . such that . is the .of the logic and . is the .. that gives the consequences of a set of sentences..We are particularly interested in Tarskian logics and certain properties that they may satisfy e.g., compactness, decomposability, distribuitivity, etc. In this chapter, Tarskian l
22#
發(fā)表于 2025-3-25 09:22:33 | 只看該作者
Logics,nd description logics (DLs). Classical Propositional Logic is the canonical example of well-behaved logic logic, i.e., a logic that satisfies the AGM assumptions. Besides the interest in the properties that these logics satisfy, they were chosen for diverse reasons. Intuitionistic logic has great in
23#
發(fā)表于 2025-3-25 12:16:45 | 只看該作者
24#
發(fā)表于 2025-3-25 18:02:27 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:43:12 | 只看該作者
Base Revision in Logics Without Negation,ssumption. In this chapter, we present a list of six constructions for revision that do not depend on negation. Each construction is characterized by a set of postulates. Furthermore, the representation theorems that prove these characterizations hold in any compact logic.
27#
發(fā)表于 2025-3-26 08:05:39 | 只看該作者
Algorithms for Belief Bases,nt algorithms for computing these sets. The similarities between the algorithms suggests that they are deeply related. We present this relation formally and show examples where computing the remainder set is much easier than computing the kernel and examples where the opposite is the case.
28#
發(fā)表于 2025-3-26 11:27:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:12:02 | 只看該作者
2191-5768 The author also presents algorithms for the most important constructions in belief bases. Researchers and practitioners in theoretical computing will find this an invaluable resource..978-1-4471-4185-3978-1-4471-4186-0Series ISSN 2191-5768 Series E-ISSN 2191-5776
30#
發(fā)表于 2025-3-26 20:43:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长乐市| 溆浦县| 沧州市| 昭苏县| 潍坊市| 武山县| 长汀县| 蒲城县| 沾益县| 浮梁县| 镶黄旗| 扶风县| 荆州市| 静海县| 马龙县| 乃东县| 黑河市| 湖南省| 太仓市| 广东省| 涿州市| 思南县| 张家口市| 汾阳市| 嘉禾县| 阜康市| 墨玉县| 三亚市| 北辰区| 黑河市| 盐山县| 涞源县| 绥滨县| 东乡族自治县| 凤庆县| 望谟县| 桦南县| 潜山县| 商南县| 钟山县| 庐江县|