找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; Third International Fabio Cuzzolin Conference proceedings 2014 Springer International Publishin

[復制鏈接]
樓主: culinary
51#
發(fā)表于 2025-3-30 09:08:47 | 只看該作者
Modeling Qualitative Assessments under the Belief Function Framework generate quantitative information from qualitative assessments. Therefore, we suggest to represent the decision maker preferences in different levels where the indifference, strict preference, weak preference and incompleteness relations are considered. Introducing the weak preference relation sepa
52#
發(fā)表于 2025-3-30 13:28:35 | 只看該作者
0302-9743 ford, UK, in September 2014. The 47 revised full papers presented in this book were carefully selected and reviewed from 56 submissions. The papers are organized in topical sections on belief combination; machine learning; applications; theory; networks; information fusion; data association; and geo
53#
發(fā)表于 2025-3-30 17:58:11 | 只看該作者
Michaela Fink,Reimer Gronemeyerof the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated, and clusters are combined based on the pignistic properties. Experiments with real uncertain data show that our proposed method can be considered as a propitious tool.
54#
發(fā)表于 2025-3-30 21:48:50 | 只看該作者
Reimer Gronemeyer,Michaela Fink class memberships are computed using the soft labels and the current parameter estimates; then, new parameter estimates are obtained using these expected memberships. Experimental results show the interest of our approach when the data labels are corrupted with noise.
55#
發(fā)表于 2025-3-31 02:51:22 | 只看該作者
56#
發(fā)表于 2025-3-31 06:53:04 | 只看該作者
57#
發(fā)表于 2025-3-31 13:15:40 | 只看該作者
58#
發(fā)表于 2025-3-31 15:07:50 | 只看該作者
Belief Hierarchical Clusteringof the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated, and clusters are combined based on the pignistic properties. Experiments with real uncertain data show that our proposed method can be considered as a propitious tool.
59#
發(fā)表于 2025-3-31 17:41:58 | 只看該作者
60#
發(fā)表于 2025-4-1 01:16:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
仁寿县| 合阳县| 宣恩县| 商河县| 兴文县| 泽库县| 潮安县| 沽源县| 视频| 静宁县| 巢湖市| 墨脱县| 肇州县| 尚志市| 泰和县| 尚义县| 怀仁县| 舞阳县| 通榆县| 梅河口市| 瑞金市| 南溪县| 渝北区| 隆德县| 呼玛县| 政和县| 阳曲县| 托克托县| 炎陵县| 金塔县| 乌拉特中旗| 清镇市| 河间市| 苗栗县| 公主岭市| 凤山市| 新丰县| 平乐县| 高州市| 五大连池市| 九寨沟县|