找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Data Science in R; Data Analysis, Visua Thomas Mailund Book 20171st edition Thomas Mailund 2017 R.programming.statistics.data sci

[復(fù)制鏈接]
樓主: Encounter
31#
發(fā)表于 2025-3-26 22:00:14 | 只看該作者
32#
發(fā)表于 2025-3-27 03:18:41 | 只看該作者
33#
發(fā)表于 2025-3-27 08:32:57 | 只看該作者
Reproducible Analysis,ses, written in various scripts, perhaps saving some intermediate results along the way or maybe always working on the raw data. You create some plots or tables of relevant summaries of the data, and then you go and write a report about the results in a text editor or word processor. It is the typic
34#
發(fā)表于 2025-3-27 10:36:47 | 只看該作者
Data Manipulation,e statistical models or machine learning algorithms we want to analyze them with. The first stages of data analysis are almost always figuring out how to load the data into R and then figuring out how to transform it into a shape you can readily analyze. The code in this chapter, and all the followi
35#
發(fā)表于 2025-3-27 14:08:05 | 只看該作者
Unsupervised Learning,king prediction models. Sometimes we are just trying to find out what structure is actually in the data we analyze. There can be several reasons for this. Sometimes unknown structures can tell us more about the data. Sometimes we want to explicitly avoid an unknown structure (if we have datasets tha
36#
發(fā)表于 2025-3-27 18:06:50 | 只看該作者
37#
發(fā)表于 2025-3-27 22:14:27 | 只看該作者
Advanced R Programming,p of the quick introduction you got in the last chapter. Except, perhaps, for the functional programming toward the end, we will not cover anything that is conceptually more complex that we did in the previous chapter. It is just a few more technical details we will dig into.
38#
發(fā)表于 2025-3-28 03:15:26 | 只看該作者
Testing and Package Checking,th a couple of chosen parameters, but to build robust software you need to approach testing more rigorously. And to prevent bugs from creeping into your code over time, you should test often. Ideally, you should check all your code anytime you make any changes to it.
39#
發(fā)表于 2025-3-28 10:19:49 | 只看該作者
40#
發(fā)表于 2025-3-28 10:37:00 | 只看該作者
Book 20171st editionrn.Perform data science and analytics using statistics and the R programming language.Visualize and explore data, including working with large data sets found in big data.Build an R package.Test and check your code.Practice version control.Profile and optimize your code.Who This Book Is For.Those wi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珠海市| 通河县| 哈尔滨市| 荥经县| 揭西县| 祁连县| 叙永县| 丘北县| 南川市| 台江县| 孟连| 庄浪县| 金沙县| 闸北区| 蒲江县| 额济纳旗| 湖口县| 苏尼特右旗| 霞浦县| 北川| 武陟县| 大城县| 德阳市| 于田县| 宁阳县| 左贡县| 杨浦区| 清丰县| 连城县| 云南省| 常山县| 惠东县| 黔西| 涞水县| 竹山县| 旬阳县| 涿州市| 西丰县| 浠水县| 九龙县| 宜丰县|