找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Statistics from Methods to Models and Applications; Research from BAYSM Sylvia Frühwirth-Schnatter,Angela Bitto,Alexandra Confer

[復(fù)制鏈接]
樓主: MOTE
31#
發(fā)表于 2025-3-26 22:45:51 | 只看該作者
2194-1009 thods, as well as a lively poster session with 30 contributions. Selected contributions have been drawn from the conference for this book. All contributions in this volume are peer-reviewed and share original r978-3-319-36234-2978-3-319-16238-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
32#
發(fā)表于 2025-3-27 02:06:23 | 只看該作者
33#
發(fā)表于 2025-3-27 09:12:05 | 只看該作者
A New Finite Approximation for the NGG Mixture Model: An Application to Density Estimationilt from the representation of the NGG process as a discrete measure, where the weights are obtained by normalization of points of a Poisson process larger than a threshold .. Consequently, the new process has an as surely finite number of location points. This process is then considered as the mixi
34#
發(fā)表于 2025-3-27 11:31:16 | 只看該作者
35#
發(fā)表于 2025-3-27 15:19:27 | 只看該作者
36#
發(fā)表于 2025-3-27 18:42:43 | 只看該作者
A Subordinated Stochastic Process Modelction via subordination. This model is useful in many applications such as growth curves (children’s height, fish length, diameter of trees, etc.) and degradation processes (crack size, wheel degradation, laser light, etc.). One advantage of our approach is the ability to easily deal with data that
37#
發(fā)表于 2025-3-28 00:48:11 | 只看該作者
Bayesian Variable Selection for Generalized Linear Models Using the Power-Conditional-Expected-Poste and expected-posterior prior, relying on the concept of random imaginary data, and provides a consistent variable selection method which leads to parsimonious selection. In this paper, the PCEP methodology is extended to generalized linear models (GLMs). We define the PCEP prior in the GLM setting,
38#
發(fā)表于 2025-3-28 03:04:50 | 只看該作者
Application of Interweaving in DLMs to an Exchange and Specialization ExperimentWong, J. Am. Stat. Assoc. 82(398):528–540, 1987) is a commonly used approach, e.g. (Carter and Kohn, Biometrika 81(3):541–553, 1994) and (Frühwirth-Schnatter, J. Time Ser. Anal. 15(2):183–202, 1994) in dynamic linear models. Using two data augmentations, Yu and Meng (J. Comput. Graph. Stat. 20(3): 5
39#
發(fā)表于 2025-3-28 09:59:21 | 只看該作者
40#
發(fā)表于 2025-3-28 11:21:42 | 只看該作者
Identifying the Infectious Period Distribution for Stochastic Epidemic Models Using the Posterior Prmic model. This method seeks to determine whether or not one can identify the infectious period distribution based only on a set of partially observed data using a posterior predictive distribution approach. Our criterion for assessing the model’s goodness of fit is based on the notion of Bayesian r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁河县| 突泉县| 交口县| 宜君县| 哈密市| 景宁| 海晏县| 安国市| 河北省| 石棉县| 肥西县| 茶陵县| 丰都县| 安达市| 吉林省| 蒲江县| 清河县| 隆安县| 阿合奇县| 博客| 马山县| 乌苏市| 绥德县| 拜泉县| 普安县| 博客| 崇义县| 洛浦县| 正蓝旗| 永丰县| 闽清县| 湄潭县| 宜君县| 绥德县| 宁陕县| 隆子县| 清原| 巴里| 武夷山市| 大厂| 镇宁|