找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Inference; Parameter Estimation Hanns L. Harney Textbook 20031st edition Springer-Verlag Berlin Heidelberg 2003 Bayes Theorem.Data

[復(fù)制鏈接]
查看: 17789|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:39:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bayesian Inference
期刊簡(jiǎn)稱Parameter Estimation
影響因子2023Hanns L. Harney
視頻videohttp://file.papertrans.cn/182/181848/181848.mp4
發(fā)行地址Brings a basic introduction for advanced undergraduates and graduates.With applications to physics.Works also w/o thorough knowledge of quantum mechanics.Includes supplementary material:
學(xué)科分類Advanced Texts in Physics
圖書(shū)封面Titlebook: Bayesian Inference; Parameter Estimation Hanns L. Harney Textbook 20031st edition Springer-Verlag Berlin Heidelberg 2003 Bayes Theorem.Data
影響因子.Filling a longstanding need in the physical sciences, .Bayesian Inference. offers the first basic introduction for advanced undergraduates and graduates in the physical sciences. This text and reference generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This usually occurs in frontier science because the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins. In this case, the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. Requiring no knowledge of quantum mechanics, the text is written on introductory level, with many examples and exercises, for physicists planning to, or working in, fields such as medical physics, nuclear physics, quantum mechanics, and chaos...?.
Pindex Textbook 20031st edition
The information of publication is updating

書(shū)目名稱Bayesian Inference影響因子(影響力)




書(shū)目名稱Bayesian Inference影響因子(影響力)學(xué)科排名




書(shū)目名稱Bayesian Inference網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Bayesian Inference網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Bayesian Inference被引頻次




書(shū)目名稱Bayesian Inference被引頻次學(xué)科排名




書(shū)目名稱Bayesian Inference年度引用




書(shū)目名稱Bayesian Inference年度引用學(xué)科排名




書(shū)目名稱Bayesian Inference讀者反饋




書(shū)目名稱Bayesian Inference讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:50:29 | 只看該作者
,Bayes’ Theorem,of densities and functions are discussed in Sect. 2.2. A symmetry argument can define the prior. This is described in Sects. 2.3 and 2.4. Prior distributions are not necessarily proper. In Sect. 2.5, we comment on improper distributions because it is unusual to admit any of them.
板凳
發(fā)表于 2025-3-22 02:09:12 | 只看該作者
地板
發(fā)表于 2025-3-22 07:20:24 | 只看該作者
Form Invariance I: Real ,, density discussed in Sect. 2.2. Under a reparameterisation of the hypothesis, the uniform density generally changes into another one that is no longer uniform. If there were a distribution invariant under all transformations, it would be the universal ignorance prior. Such a distribution does not e
5#
發(fā)表于 2025-3-22 12:47:40 | 只看該作者
Beyond Form Invariance: The Geometric Prior,ticular, without knowledge of the multiplication function. This is useful because the analysis of the symmetry group may be difficult. This is also of basic importance, since the formula allows one to generalise the definition of the prior distribution to cases where form invariance does not exist.
6#
發(fā)表于 2025-3-22 13:32:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:47 | 只看該作者
Independence of Parameters,l . is assumed here to have two parameters. The way in which the model connects the parameters .. and .. with the set . = (.., ..., ..) of events may be such that it is impossible to integrate over one of them — say .. — and to infer .. individually. The reason is that it may be impossible to define
8#
發(fā)表于 2025-3-22 21:28:07 | 只看該作者
9#
發(fā)表于 2025-3-23 02:43:14 | 只看該作者
Judging a Fit I: Real ,, 13, the function .(.) is actually a family of functions .(.; .), and one determines the range of . that falls into the Bayesian area. It is possible that even the optimum parameter .., defined in Sect. 3.3, yields an inadequate fit. The optimum parameter suggests that one can represent the observed
10#
發(fā)表于 2025-3-23 08:24:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦江县| 株洲市| 东明县| 邵武市| 定边县| 措美县| 涟源市| 新巴尔虎左旗| 舒城县| 金坛市| 抚宁县| 南木林县| 太保市| 肃南| 上犹县| 巨鹿县| 金川县| 宽甸| 五莲县| 哈巴河县| 大冶市| 元谋县| 阳城县| 炎陵县| 琼海市| 建水县| 乐都县| 灌南县| 阳朔县| 林芝县| 贡山| 厦门市| 百色市| 淮滨县| 昌都县| 紫阳县| 长寿区| 浦县| 谷城县| 华蓥市| 洛川县|