找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Computation with R; Jim Albert Textbook 20071st edition Springer-Verlag New York 2007 Bayesian Inference.Hierarchical modeling.Ma

[復(fù)制鏈接]
樓主: 推翻
31#
發(fā)表于 2025-3-26 22:56:28 | 只看該作者
Regression Models,el and describe algorithms to simulate from the joint distribution of regression parameters and error variance and the predictive distribution of future observations. One can judge the adequacy of the fitted model through use of the posterior predictive distribution and the inspection of the posteri
32#
發(fā)表于 2025-3-27 04:22:31 | 只看該作者
Gibbs Sampling,ppose that we partition the parameter vector of interest into . components . = (.1.), where . may consist of a vector of parameters. The MCMC algorithm is implemented by sampling in turn from the . conditional posterior distributions.
33#
發(fā)表于 2025-3-27 07:26:39 | 只看該作者
34#
發(fā)表于 2025-3-27 10:05:27 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:02 | 只看該作者
Claus Hüsselmann,Thomas Hemmannsian inference for a variance for a normal population and inference for a Poisson mean when informative prior information is available. For both problems, summarization of the posterior distribution is facilitated by the use of R functions to compute and simulate distributions from the exponential f
36#
發(fā)表于 2025-3-27 18:51:41 | 只看該作者
Claus Hüsselmann,Thomas Hemmannation or multinomial parameters, posterior inference is accomplished by simulating from distributions of standard forms. Once a simulated sample is obtained from the joint posterior, it is straightforward to perform transformations on these simulated draws to learn about any function of the paramete
37#
發(fā)表于 2025-3-28 00:23:53 | 只看該作者
38#
發(fā)表于 2025-3-28 06:10:56 | 只看該作者
Rolf Irion,Fabian Schmidt-Schr?derrior distribution, but it can be difficult to set up since it requires the construction of a suitable proposal density. Importance sampling and SIR algorithms are also general-purpose algorithms, but they also require proposal densities that may be difficult to find for high-dimensional problems. In
39#
發(fā)表于 2025-3-28 08:17:19 | 只看該作者
40#
發(fā)表于 2025-3-28 12:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁都县| 襄城县| 平陆县| 内黄县| 蒙自县| 年辖:市辖区| 兴仁县| 池州市| 冷水江市| 武冈市| 崇信县| 嫩江县| 高平市| 满城县| 吉林省| 北宁市| 枝江市| 鄄城县| 运城市| 原阳县| 贡嘎县| 潢川县| 蓬溪县| 芜湖县| 昌平区| 武城县| 肇源县| 安新县| 岳池县| 青浦区| 荣昌县| 依安县| 达孜县| 景德镇市| 永川市| 涿州市| 上饶县| 玛沁县| 新密市| 盐源县| 清苑县|