找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Baudynamik; Einführung in die Dy Hans Günther Natke Textbook 1989 Springer Fachmedien Wiesbaden 1989 Baudynamik.Dynamik.Einfreiheitsgradmod

[復(fù)制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 06:56:07 | 只看該作者
https://doi.org/10.1057/9780312299750ls 3 zu l?sen. Das MFGM mu? das dynamische Verhalten des realen Systems in einem vorgegebenen Frequenzbereich wiedergeben, und die Modellgenauigkeit sollte dem Verwendungszweck (z. B. Entwurfsrechnung oder Ausführrechnung) angemessen sein.
22#
發(fā)表于 2025-3-25 09:21:18 | 只看該作者
Die numerische Berechnung kontinuierlicher Systeme,ls 3 zu l?sen. Das MFGM mu? das dynamische Verhalten des realen Systems in einem vorgegebenen Frequenzbereich wiedergeben, und die Modellgenauigkeit sollte dem Verwendungszweck (z. B. Entwurfsrechnung oder Ausführrechnung) angemessen sein.
23#
發(fā)表于 2025-3-25 13:41:25 | 只看該作者
24#
發(fā)表于 2025-3-25 17:53:07 | 只看該作者
25#
發(fā)表于 2025-3-25 23:38:12 | 只看該作者
Einleitung,alb und andererseits innerhalb des Geb?udes liegen. Die Belastungen k?nnen sto?artig bis statisch erfolgen. Eine sto?artige Belastung ist beispielsweise eine Windb? auf ein schlankes Bauwerk; quasistatische Belastungen sind die t?gliche W?rmeeinstrahlung und die Setzung. Neben dem in Bild 1.1 angede
26#
發(fā)表于 2025-3-26 01:10:44 | 只看該作者
Einfreiheitsgradmodelle (EFGM),se) m, masselose lineare Feder mit der Steifigkeit (Federkonstante) k bzw. der Nachgiebigkeit 1/k, masseloser viskoser D?mpfer mit dem D?mpfungskoeffizienten b. Schr?nkt man die m?glichen 3 Freiheitsgrade (FG) des ungebundenen Punktes (: Punktkinematik) auf einen FG ein, so erh?lt man mit den oben a
27#
發(fā)表于 2025-3-26 06:57:04 | 只看該作者
Mehrfreiheitsgradmodelle (MFGM),M. Die zugeh?rige minimale Anzahl n von Bewegungskoordinaten hei?t die Anzahl der FG des MFGM: n-Freiheitsgradmodell. Die meisten dynamischen Probleme lassen sich auf MFGM zurückführen (s. Bild 1.5), zumindest dann, wenn die Modelle numerisch behandelt werden müssen (s. die folgenden Kapitel, inbeso
28#
發(fā)表于 2025-3-26 09:56:10 | 只看該作者
Einfache kontinuierliche Schwinger,nd als deformier-bar anzusetzen. Die Beschreibung ihres dynamischen Zustandes mu? demzufolge orts- und zeitabh?ngig erfolgen. Die Verschiebungen bilden demnach ein Verschiebungsfeld, die zugeh?rigen Geschwindigkeiten das Geschwindigkeitsfeld. Wegen der vier unabh?ngigen Variablen der Feldbeschreibun
29#
發(fā)表于 2025-3-26 14:44:39 | 只看該作者
30#
發(fā)表于 2025-3-26 18:17:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾益县| 揭东县| 香港| 五峰| 砀山县| 乌苏市| 施甸县| 双江| 郴州市| 林甸县| 北流市| 额尔古纳市| 镇宁| 双城市| 阳信县| 蕲春县| 景东| 积石山| 汾西县| 南昌县| 玉门市| 佛学| 吉木乃县| 正阳县| 昂仁县| 溧水县| 德庆县| 乌兰县| 托里县| 忻城县| 华池县| 临高县| 建阳市| 韶关市| 兴仁县| 无锡市| 英超| 桦川县| 高碑店市| 磴口县| 庆阳市|