找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology 2; Topological Groups, Avishek Adhikari,Mahima Ranjan Adhikari Textbook 2022 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
樓主: KEN
21#
發(fā)表于 2025-3-25 03:38:30 | 只看該作者
22#
發(fā)表于 2025-3-25 08:27:19 | 只看該作者
https://doi.org/10.1007/978-3-319-24633-8es of books studies the general properties of topological spaces and their continuous maps. But this chapter studies the topological spaces with other structures (algebraic) compatible with the given topological structures. For example, the circle group . in the complex plane . the 3-spheres . (grou
23#
發(fā)表于 2025-3-25 12:13:17 | 只看該作者
https://doi.org/10.1007/978-3-642-58600-2 . avoiding algebraic topology, except for a few isolated cases. It also studies the topology from a differential viewpoint. All manifolds studied in this chapter are by defining conditions topological manifolds in the sense that every manifold . carries a topological structure on its underlying spa
24#
發(fā)表于 2025-3-25 16:23:39 | 只看該作者
Stefan Kunze,Erik Schnetter,Roland Speith abstract group structure together with topological and manifold structures which are interrelated with each other by smooth functions. Lie groups consist of two most important special families: a family of differentiable manifolds and a family of topological groups. Their important examples include
25#
發(fā)表于 2025-3-25 21:52:43 | 只看該作者
26#
發(fā)表于 2025-3-26 00:16:43 | 只看該作者
The Small Scale Structure of the Universeudy of the topological concepts and results available in Volume 1 of the present series. Moreover, the books [Adhikari and Adhikari, 2014], [Adhikari, 2016], [Dugundji, 1966], [Simmons, 1963] and some other references are given in Bibliography.
27#
發(fā)表于 2025-3-26 05:53:36 | 只看該作者
Avishek Adhikari,Mahima Ranjan AdhikariPresents motivating examples, numerous illustrations, and applications.Provides problem-solving techniques for a better grasp of the topic.Promotes active learning of the subject with historical note
28#
發(fā)表于 2025-3-26 11:50:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:58:49 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 17:41:40 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安仁县| 榆树市| 赞皇县| 乃东县| 巍山| 信阳市| 尤溪县| 崇仁县| 浙江省| 化隆| 体育| 紫云| 杭锦后旗| 镶黄旗| 清丰县| 且末县| 无极县| 太和县| 本溪市| 和静县| 沙坪坝区| 和平县| 昌江| 河池市| 额尔古纳市| 农安县| 灌阳县| 澄城县| 奉新县| 双鸭山市| 旺苍县| 夏邑县| 昌乐县| 徐闻县| 元江| 潍坊市| 淮阳县| 天峻县| 赤水市| 玛纳斯县| 高青县|